

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

June 1993 Revised April 2005

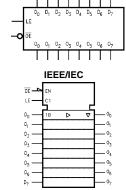
74LVX373

Low Voltage Octal Transparent Latch with 3-STATE Outputs

General Description

The LVX373 consists of eight latches with 3-STATE outputs for bus organized system applications. The latches appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data satisfying the input timing requirements is latched. Data appears on the bus when the Output Enable $(\overline{\text{OE}})$ is LOW. When $\overline{\text{OE}}$ is HIGH, the bus output is in the high impedance state. The inputs tolerate up to 7V allowing interface of 5V systems to 3V systems.

Features


- Input voltage translation from 5V to 3V
- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance

Ordering Code:

Order Number	Package Number	Package Description
74LVX373M	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVX373SJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVX373MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. Pb-Free package per JEDED J-STD-020B.

Logic Symbols

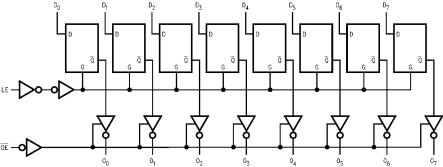
Connection Diagram

Pin Descriptions

Pin Names	Description
D ₀ -D ₇	Data Inputs
LE	Latch Enable Input
ŌĒ	Output Enable Input
O ₀ -O ₇	3-STATE Latch Outputs

Truth Table

	Inputs					
LE	OE	D _n	O _n			
Х	Н	Х	Z			
Н	L	L	L			
Н	L	Н	Н			
L	L	Х	O ₀			


- H = HIGH Voltage Level
- L = LOW Voltage Level
- Z = High Impedance X = Immaterial
- O_0 = Previous O_0 before HIGH-to-LOW transition of Latch Enable

Functional Description

The LVX373 contains eight D-type latches with 3-STATE standard outputs. When the Latch Enable (LE) input is HIGH, data on the $D_{\rm n}$ inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transparent of the transparent of the D inputs a setup time preceding the HIGH-to-LOW transparent of the transparent of the

sition of LE. The 3-STATE standard outputs are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the standard outputs are in the 2-state mode. When \overline{OE} is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (I_{IK})

 $\begin{array}{lll} \mbox{V}_{\mbox{\scriptsize I}} = -0.5 \mbox{\scriptsize V} & -20 \mbox{ mA} \\ \mbox{\scriptsize DC Input Voltage (V}_{\mbox{\scriptsize I}}) & -0.5 \mbox{\scriptsize V} \mbox{\scriptsize to 7V} \end{array}$

DC Output Diode Current (I_{OK})

 $V_{O} = -0.5V$ -20 mA $V_{O} = V_{CC} + 0.5V$ +20 mA

DC Output Voltage (V_O) -0.5V to $V_{CC} + 0.5V$

DC Output Source

or Sink Current (I_O) $\pm 25 \text{ mA}$

DC V_{CC} or Ground Current

 $\begin{array}{ll} (I_{CC} \ or \ I_{GND}) & \pm 75 \ mA \\ \\ \mbox{Storage Temperature} \ (T_{STG}) & -65 \ ^{\circ}\mbox{C} \ to +150 \ ^{\circ}\mbox{C} \end{array}$

Power Dissipation 180 mW

Recommended Operating Conditions (Note 2)

Supply Voltage (V_{CC}) 2.0V to 3.6V

Input Rise and Fall Time ($\Delta t/\Delta V$) 0 ns/V to 100 ns/V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{cc}	T _A = +25°C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions		
Cymbol	i arameter	• 66	Min	Тур	Max	Min	Max	Oilita	Conditions	
V _{IH}	HIGH Level	2.0	1.5			1.5				
	Input Voltage	3.0	2.0			2.0		V		
		3.6	2.4			2.4				
V _{IL}	LOW Level	2.0			0.5		0.5			
	Input Voltage	3.0			0.8		0.8	V		
		3.6			0.8		0.8			
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu\text{A}$ $I_{OH} = -50 \mu\text{A}$ $I_{OH} = -4 \text{ mA}$	
	Output Voltage	3.0	2.9	3.0		2.9		V	I _{OH} = -50 μA	
		3.0	2.58			2.48			$I_{OH} = -4 \text{ mA}$	
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH} \text{ or } V_{IL} I_{OL} = 50 \mu\text{A}$	
	Output Voltage	3.0		0.0	0.1		0.1	V	$I_{OL} = 50 \mu A$	
		3.0			0.36		0.44		I _{OL} = 4 mA	
loz	3-STATE Output	3.6			±0.25		±2.5	μΑ	$V_{IN} = V_{IH}$ or V_{IL}	
	Off-State Current								V _{OUT} = V _{CC} or GND	
I _{IN}	Input Leakage Current	3.6			±0.1		±1.0	μΑ	V _{IN} = 5.5V or GND	
I _{CC}	Quiescent Supply Current	3.6			4.0		40.0	μΑ	V _{IN} = V _{CC} or GND	

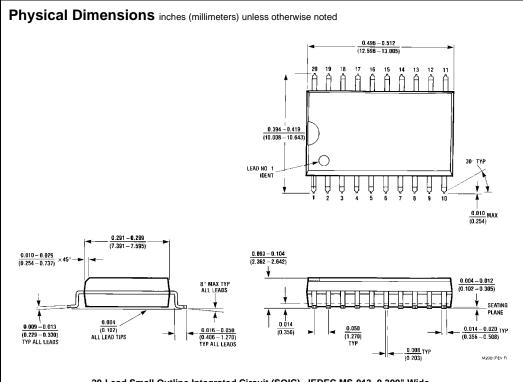
Noise Characteristics (Note 3)

Symbol	Parameter	v _{cc}	T _A = 25°C		Units	C _L (pF)	
	1		Тур	Limit			
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	0.5	0.8	V	50	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}		-0.5	-0.8	V	50	
V_{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	50	
V_{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3		0.8	V	50	

Note 3: Input $t_r = t_f = 3 \text{ ns.}$

AC Electrical Characteristics

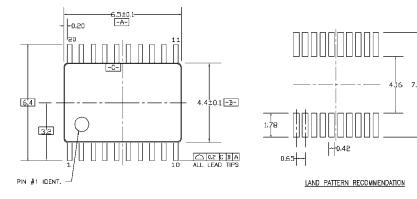
Symbol	Parameter	V _{CC}	T _A = +25°C			T _A = -40°	C to +85°C	Units	Conditions	
Зупівої		(V)	Min	Тур	Max	Min	Max	Units	Conditions	
t _{PLH}	Propagation Delay Time	2.7		7.7	15.0	1.0	18.5		C _L = 15 pF	
t _{PHL}	D _n to O _n			10.2	18.5	1.0	22.0	ns	C _L = 50 pF	
		3.3 ± 0.3		6.0	9.7	1.0	11.5	115	C _L = 15 pF	
				8.5	13.2	1.0	15.0		C _L = 50 pF	
t _{PLH}	Propagation Delay Time	2.7		7.5	14.5	1.0	17.5		C _L = 15 pF	
t _{PHL}	LE to O _n			10.0	18.0	1.0	21.0	ns	C _L = 50 pF	
		3.3 ± 0.3		5.8	9.3	1.0	11.0	115	C _L = 15 pF	
				8.3	12.8	1.0	14.5		C _L = 50 pF	
t _{PZL}	3-STATE Output	2.7		7.7	15.0	1.0	18.5		$C_L = 15 \text{ pF}, R_L = 1 \text{ k}\Omega$	
t_{PZH}	Enable Time			10.2	18.5	1.0	22.0	ns	$C_L = 50 \text{ pF}, R_L = 1 \text{ k}\Omega$	
		3.3 ± 0.3		6.0	9.7	1.0	11.5	115	$C_L = 15 \text{ pF}, R_L = 1 \text{ k}\Omega$	
				8.5	13.2	1.0	15.0		$C_L = 50 \text{ pF}, R_L = 1 \text{ k}\Omega$	
t _{PLZ}	3-STATE Output	2.7		9.8	18.0	1.0	21.0	ns	$C_L = 50 \text{ pF}, R_L = 1 \text{ k}\Omega$	
t_{PHZ}	Disable Time	3.3 ± 0.3		8.2	12.8	1.0	14.5	115	$C_L = 50 \text{ pF}, R_L = 1 \text{ k}\Omega$	
t _W	LE Pulse Width, HIGH	2.7	6.5			7.5		ns		
		3.3 ± 0.3	5.0			5.0		115		
t _S	Setup Time, D _n to LE	2.7	6.0			6.0		ns		
		3.3 ± 0.3	4.0			4.0		115		
t _H	Hold Time, D _n to LE	2.7	1.0			1.0		ns		
		3.3 ± 0.3	1.0			1.0		115		
toslh	Output to Output Skew	2.7			1.5		1.5	ns	C _L = 50 pF	
toshl	(Note 4)	3.3			1.5		1.5	115		

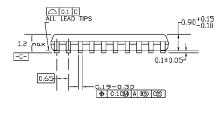

Note 4: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|$

Capacitance

Symbol	Parameter		T _A = +25°C		T _A = -40°0	Units	
		Min	Тур	Max	Min	Max	Oilles
C _{IN}	Input Capacitance		4	10		10	pF
C _{OUT}	Output Capacitance		6				pF
C _{PD}	Power Dissipation		27				pF
	Capacitance (Note 5)						

Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{IN} + I_{CC}}{8 \text{ (per Latch)}}$



20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 2.6±0.10 0.40 TYP --A-5.01 TYP 5.3±0.10 9.27 TYP 7.8 -B-3.9 0.2 C B A ALL LEAD TIPS 10 PIN #1 IDENT.-0.6 TYP 1.27 TYP -LAND PATTERN RECOMMENDATION ALL LEAD TIPS SEE DETAIL A 0.1 C 2.1 MAX. 1.8±0.1 0.15±0.05 0.15-0.25 -1.27 TYP 0.35-0.51 **♦** 0.12 **⋈** C A DIMENSIONS ARE IN MILLIMETERS GAGE PLANE 0.25 NOTES: A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998. B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. 0.60±0.15-SEATING PLANE 1.25 -M20DRevB1 DETAIL A Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND THE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M. 1982.

R0.09nin GAGE PLANE O - 8-7 O.6±0.1 R0.09nin DETAIL A

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative