## GENLINX® II GS9023B Embedded Audio CODEC

## Key Features

- single chip embedded audio solution
- operates as an embedded audio multiplexer or demultiplexer
- full support for 48 kHz synchronous 20/24 bit audio
- 4 channels of audio per GS9023B
- cascadable architecture supports additional audio channels
- multiplexes and demultiplexes arbitrary ANC data packets
- support for $143,177,270,360$ and $540 \mathrm{Mb} / \mathrm{s}$ video standards
- full processing of audio parity, channel status and user data
- multiplexes and demultiplexes audio control packets
- EDH generation and insertion when in Multiplex Mode
- 3.3 V core with 3.3 V or 5 V I/O (requires 5 V supply)
- complies with SMPTE $272 \mathrm{M} \mathrm{A}, \mathrm{B}$, and C


## Applications

SDI Embedded Audio

## Brief Description

The GS9023B is a highly integrated, single chip solution for the multiplexing/demultiplexing of digital audio channels into and out of digital video signals. The GS9023B supports the multiplexing/demultiplexing of 20 or 24-bit synchronous audio data with a 48 kHz sample rate.

Audio signals with different sample rates may be sample rate converted to 48 kHz before and after the GS9023B using audio sample rate converters.

Each GS9023B supports all the processing required to handle the multiplexing/demultiplexing of four digital audio channels. To simplify system design, the GS9023B seamlessly integrates with common AES/EBU digital audio receivers and transmitters. The cascadable architecture allows for the multiplexing/demultiplexing of additional audio channels with no external glue logic.

The GS9023B supports video standards with rates from $143 \mathrm{Mb} / \mathrm{s}$ to $540 \mathrm{Mb} / \mathrm{s}$. When in Multiplex Mode, the GS9023B supports the generation and insertion of EDH information according to SMPTE RP165. In combination with Gennum's GS9032, the GS9023B provides a low power, highly integrated two chip solution for SDI transmit applications. In combination with Gennum's GS7005, the GS9023B provides a low power, highly integrated two chip solution for SDI receive applications.

The GS9023B requires a 3.3 V power supply for internal core logic and a 3.3 V or 5 V power supply for device I/O.


## Multiplex Mode Block Diagram



Demultiplex Mode Block Diagram

## Contents

Key Features ..... 1
Applications .....  1
Brief Description ..... 1

1. Pin Connections ..... 5
1.1 Pin Descriptions ..... 5
2. Electrical Characteristics ..... 10
2.1 Absolute Maximum Ratings ..... 10
2.2 DC Electrical Characteristics ..... 10
2.3 AC Electrical Characteristics ..... 11
2.4 Solder Reflow Profiles ..... 14
3. Detailed Description ..... 15
3.1 Multiplex Mode ..... 15
3.1.1 Video Clock Input ..... 15
3.1.2 Video Data Input ..... 15
3.1.3 Video Data Output ..... 17
3.1.4 Audio Clock Input ..... 17
3.1.5 Audio Data Input ..... 17
3.1.6 Control Code Input ..... 18
3.1.7 Audio Data Packets ..... 20
3.1.8 Extended Audio Data Packets ..... 24
3.1.9 Audio Control Packets ..... 27
3.1.10 Arbitrary Data Packets ..... 31
3.1.11 Error Detection. ..... 33
3.2 Demultiplex Mode ..... 34
3.2.1 Video Clock Input. ..... 34
3.2.2 Video Data Input ..... 34
3.2.3 Video Data Output ..... 34
3.2.4 Audio Clock Input ..... 35
3.2.5 Audio Data Output ..... 36
3.2.6 Control Code Output ..... 38
3.2.7 Detection of Audio Packets ..... 38
3.2.8 Detection of Extended Audio Packets ..... 39
3.2.9 Detection of Audio Control Packets. ..... 40
3.2.10 Detection and Output of Arbitrary Data Packets ..... 40
3.2.11 Error Detection. ..... 40
3.3 Multiplex and Demultiplex Modes ..... 41
3.3.1 Delay of Video and Audio ..... 41
3.3.2 Non-Standard Sample Distributions ..... 41
3.3.3 Host Interface ..... 41
3.3.4 Reset ..... 41
3.3.5 Interconnection with GS9032 or GS7005 ..... 42
3.3.6 Audio Clock and Video Clock Stability in Multiplex Mode. ..... 42
3.3.7 Interconnection with GS9020 ..... 42
4. Host Interface Tables ..... 43
4.1 Multiplex Mode ..... 43
4.2 Demultiplex Mode ..... 47
5. Clock Generation for the GS9023B with the GS4901B ..... 52
5.1 Demultiplexing ..... 52
5.2 Multiplexing ..... 53
6. Packaging $\mathcal{E}$ Ordering Information ..... 54
6.1 Package Dimensions ..... 54
6.2 Packaging Data ..... 54
6.3 Ordering Information ..... 54
7. Revision History ..... 55

## 1. Pin Connections



NOTE: The GS9023B DOUT[9:0] MSB to LSB convention is compatible with the GS9022 but reversed with the GS9032 or GS7005
See Interconnection with GS9032 or GS7005 section.

### 1.1 Pin Descriptions

Table 1-1: Pin Descriptions

| Number | Symbol | Type | Description |
| :--- | :--- | :--- | :--- |
| $1,17,26,90$ | VDDINT |  | +3.3V power supply pins for core logic. |
| $2-4$ | VM[2:0] | I | Video standard format. Used in conjunction with the TRS pin. VM[2] is the MSB <br> and VM[0] is the LSB. See Table 3-1. |
| 5 | DEMUX/MUX | I | Mode of operation. When set HIGH, the GS9023B operates in Demultiplex Mode. <br> When set LOW, the GS9023B operates in Multiplex Mode. <br> NOTE: A device reset must be performed when switching between Multiplex and <br> Demultiplex Modes while the device is powered up. |
| $6-10,12-16$ | DIN[9:0] | Parallel digital video signal input. DIN[9] is the MSB and DIN[0] is the <br> LSB. The digital video input must contain TRS information. |  |

## Table 1-1: Pin Descriptions (Continued)

| Number | Symbol | Type | Description |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 11,23,25,29,50 \\ & 58,71,82,98,100 \end{aligned}$ | GND |  | Device ground. |
| 18 | $\overline{\text { RESET }}$ | 1 | Device reset. Active low. <br> NOTE: The video input to output data path will be interrupted during device reset. |
| 19 | WCINA | 1 | 48 kHz word clock for channels 1 and 2. Used only when operating in Multiplex Mode and when the audio source is not an AES/EBU data stream. This pin should be grounded when inputting AES/EBU digital audio data or when operating in Demultiplex Mode. |
| 20 | WCINB | 1 | 48 kHz word clock for channels 3 and 4 . Used only when operating in Multiplex Mode and when the audio source is not an AES/EBU data stream. This pin should be grounded when inputting AES/EBU digital audio data or when operating in Demultiplex Mode. |
| 21 | AINA | 1 | Audio signal input for channels 1 and 2. AES/EBU digital audio data is bi-phase mark encoded. For all non-AES/EBU input modes, bi-phase mark encoding is not required. |
| 22 | AINB | 1 | Audio signal input for channels 3 and 4. AES/EBU digital audio data is bi-phase mark encoded. For all non-AES/EBU input modes, bi-phase mark encoding is not required. |
| 24 | PCLK | 1 | Video clock signal input. |
| 27, 28, 75 | TEST | - | Connect to ground. |
| 30 | SAFA | I/O | Start of audio frame indicator for channels 1 and 2. Valid only for non-AES/EBU audio formats. This pin should be grounded when inputting AES/EBU audio data. SAFA is HIGH for audio frame 0 and LOW for all other audio frames. In Multiplex Mode, this pin is an input and is supplied by the user. In Demultiplex Mode, this pin is an output and is generated by the GS9023B. |
| 31 | SAFB | I/O | Start of audio frame indicator for channels 3 and 4. Valid only for non-AES/EBU audio formats. This pin should be grounded when inputting AES/EBU audio data. SAFB is set to HIGH for audio frame 0 and LOW for all other audio frames. In Multiplex Mode, this pin is an input and is supplied by the user. In Demultiplex Mode, this pin is an output and is generated by the GS9023B. |
| 32 | VFLA | 1/0 | Validity flag for channels 1 and 2. Valid only for non-AES/EBU audio formats. This pin should be grounded when inputting AES/EBU audio data. VFLA is HIGH when audio is invalid and LOW when audio is valid. In Multiplex Mode, this pin is an input and is supplied by the user. In Demultiplex Mode, this pin is an output and is generated by the GS9023B. |
| 33 | VFLB | I/O | Validity flag for channels 3 and 4. Valid only for non-AES/EBU audio formats. This pin should be grounded when inputting AES/EBU audio data. VFLB is HIGH when audio is invalid and LOW when audio is valid. In Multiplex Mode, this pin is an input and is supplied by the user. In Demultiplex Mode, this pin is an output and is generated by the GS9023B. |
| 34 | UDA | I/O | User data for channels 1 and 2. Valid only for non-AES/EBU audio formats. This pin should be grounded when inputting AES/EBU audio data. In Multiplex Mode, this pin is an input and is supplied by the user. In Demultiplex Mode, this pin is an output and is generated by the GS9023B. |

## Table 1-1: Pin Descriptions (Continued)

| Number | Symbol | Type | Description |
| :---: | :---: | :---: | :---: |
| 35 | UDB | I/O | User data for channels 3 and 4. Valid only for non-AES/EBU audio formats. This pin should be grounded when inputting AES/EBU audio data. In Multiplex Mode, this pin is an input and is supplied by the user. In Demultiplex Mode, this pin is an output and is generated by the GS9023B. |
| 36 | CSA | I/O | Channel status for channels 1 and 2. Valid only for non-AES/EBU audio formats. This pin should be grounded when inputting AES/EBU audio data. In Multiplex Mode, this pin is an input and is supplied by the user. In Demultiplex Mode, this pin is an output and is generated by the GS9023B. |
| 37 | CSB | I/O | Channel status for channels 3 and 4. Valid only for non-AES/EBU audio formats. This pin should be grounded when inputting AES/EBU audio data. In Multiplex Mode, this pin is an input and is supplied by the user. In Demultiplex Mode, this pin is an output and is generated by the GS9023B. |
| 38 | AUXEN | I/O | Extended audio enable. When HIGH, the GS9023B processes 24-bit audio samples. When LOW, the GS9023B processes 20 -bit samples. In Multiplex Mode, this pin is an input and is supplied by the user. The setting is logical OR with the related A4ON setting in host interface register address 1 h . In Demultiplex Mode, this pin is an output and is generated by the GS9023B. |
| 39, 51, 67, 76 | VDDIO |  | +3.3 V or +5 V power supply pins for device I/Os. In order for device I/O to be +5 V tolerant $\mathrm{V}_{\text {DDIO }}$ must be +5 V . Device $\mathrm{I} / \mathrm{O}$ are not +5 V tolerant if $\mathrm{V}_{\text {DDIO }}$ is +3.3 V . |
| 40-48 | PKT[8:0] | I/O | Arbitrary data I/O bus. In Multiplex Mode, the user must input the arbitrary data packet words starting from the secondary data identification (SDID) to the last user data word (UDW) according to SMPTE 291 M . The GS9023B internally converts the data to 10 bits by generating the inversion bit (bit 9). The checksum (CS) word is also generated internally. In Demultiplex Mode, the GS9023B outputs the arbitrary data packet words starting from the SDID to the last UDW. PKT[8] is the MSB and PKT[0] is the LSB. See Figure 3-11 and Figure 3-16. |
| 49 | PKTEN | I/O | Arbitrary data packet enable. In Multiplex Mode, PKTEN must be set HIGH one PCLK cycle before Arbitrary packet data is input to the device. In Demultiplex Mode, the output is set HIGH when outputting Arbitrary packet data. See Figure 3-11 and Figure 3-16. |
| 52,69 | NC | N/A | No Connect. Do not connect these pins. |
| 53 | WCOUT | 0 | 48 kHz word clock for channels 1, 2, 3 and 4 . Valid only when operating in Demultiplex Mode. |
| 54 | AOUTB | 0 | Audio signal output for channels 3 and 4. The AES/EBU digital audio output is bi-phase mark encoded. In all non-AES/EBU modes, the output is not bi-phase mark encoded. |
| 55 | AOUTA | 0 | Audio signal output for channels 1 and 2. The AES/EBU digital audio output is bi-phase mark encoded. In all non-AES/EBU modes, the output is not bi-phase mark encoded. |
| 56, 57, 59-66 | DOUT[9:0] | 0 | Parallel digital video signal output. DOUT[9] is the MSB and DOUT[0] is the LSB. |

## Table 1-1: Pin Descriptions (Continued)

| Number | Symbol | Type | Description |
| :---: | :---: | :---: | :---: |
| 68 | LOCK | 0 | Lock indicator. In Multiplex Mode, when HIGH, the video standard has been identified, the start of a new video frame has been detected and the device is multiplexing audio. |
|  |  |  | NOTE: LOCK will not be set HIGH unless at least one of the audio channel enable bits is HIGH. See "CHACT" description in Table 4-1. |
|  |  |  | In Demultiplex Mode, when HIGH, the video standard has been identified, the 'lock' process selected by "ACTSEL" has been validated and the device is demultiplexing audio. See "ACTSEL" description in Table 4-2. |
|  |  |  | NOTE: LOCK remains active regardless of the number of audio samples in the video stream after 'lock' is achieved. |
| 70 | BUFERR | 0 | Buffer error. Indicates when an internal buffer overflow/underflow error has occurred. Valid only when the device is configured to operate in Demultiplex Mode. |
|  |  |  | NOTE: If an internal buffer overflow/underflow condition occurs, the GS9023B does not mute the audio output. |
| 72-74, 77-81 | DATA[0:7] | I/O | Host Interface data bus. DATA[7] is the MSB and DATA[0] is the LSB. |
| 83 | $\overline{\mathrm{RE}}$ | 1 | Read enable for Host Interface. Active LOW. |
| 84 | WE | 1 | Write enable for Host Interface. Active LOW. |
| 85 | $\overline{C S}$ | 1 | Chip select for Host Interface. Active LOW. |
| 86-89 | ADDR[3:0] | 1 | Host Interface address bus. ADDR[3] is the MSB and ADDR[0] is the LSB. |
| 91 | ANCI | 1 | ANCI Selection. Valid in Demultiplex Mode only. When set HIGH, each ancillary data packet with a DID corresponding to either the audio packet DID, the extended audio packet DID or the arbitrary packet DID is removed from the video signal. The data contained in the packets are output at the corresponding pins. The various DIDs are user programmable in the internal registers and are accessible via the Host Interface. |
|  |  |  | NOTE: When ancillary data packets are deleted, the GS9023B does not recalculate the EDH checkwords. |
|  |  |  | When set LOW, all ancillary data packets remain in the video signal. |
| 92 | TRS | 1 | TRS Selection. Used in conjunction with the VM[2:0] pins to select video standard format. In Multiplex Mode, when the TRS pin is HIGH, TRS is added to a composite video signal. In Demultiplex Mode, when HIGH, TRS is removed from a composite video signal. See Table 3-1. |
| 93 | EDH_INS | 1 | EDH Insert Selection. Valid in Multiplex Mode only. When set HIGH, the GS9023B performs EDH functions according to SMPTE RP165. When set LOW, EDH is not inserted. This setting is logical OR with the related EDHON setting in host interface register address 1 h . |
|  |  |  | NOTE: Active picture and full field data words are updated from recalculated values but error flag information is replaced with the values programmed in the internal registers via the Host Interface. |
| 94 | MUTE | 1 | Audio mute. In Multiplex Mode, when set HIGH, the embedded audio packets are forced to ' 0 '. In Demultiplex Mode, when set HIGH, the output data is forced to " 0 ". This setting is logical OR with the related MUTE setting in host interface address 4h. |
| 95-97 | AM[2:0] | 1 | Audio mode format. In Multiplex Mode, AM[2:0] indicates the input audio data format. In Demultiplex Mode, AM[2:0] indicates the output audio data format. AM[2] is the MSB and AM[0] is the LSB. See Table 3-2. |
| GS9023B GENLINX® II GS9023B Embedded Audio |  |  | 8 of 56 |
| CODEC |  |  | nnum |
| Data Sheet <br> 37954-2 | mber 2009 |  | Proprietary \& Confidential |

## Table 1-1: Pin Descriptions (Continued)

| Number | Symbol | Type | Description |
| :--- | :--- | :---: | :--- |
| 99 | ACLK | I | Input audio signal clock (128 fs). Synchronous to PCLK. In non-AES/EBU audio <br> modes, the serial audio data is sampled on both edges of ACLK. |

NOTE: All unused inputs of the GS9023B should be connected to ground.

## 2. Electrical Characteristics

### 2.1 Absolute Maximum Ratings

| Parameter | Value |
| :--- | :--- |
| I/O Supply Voltage | -0.3 to 7.0 V |
| Internal Supply Voltage | -0.3 to 4.0 V |
| Input Voltage (any input) | -0.3 to V $\mathrm{DDIO}+0.5 \mathrm{~V}$ |
| Operating Temperature | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |
| Lead Temperature (Soldering, 10 sec.$)$ | $260^{\circ} \mathrm{C}$ |

### 2.2 DC Electrical Characteristics

Table 2-1: DC Electrical Characteristics
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise shown.

| Parameter | Symbol | Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I/O Supply Voltage | $V_{\text {DDIO }}$ | 5 V Operating range | 4.75 | 5.00 | 5.25 | V |
| I/O Supply Current | $\mathrm{I}_{\text {DDIO }}$ | $\mathrm{V}_{\text {DDIO }}=5 \mathrm{~V} ;$ PCLK $=54.0 \mathrm{MHz}$ | - | 25 | - | mA |
| I/O Supply Current | $\mathrm{I}_{\text {DDIO }}$ | $V_{\text {DDIO }}=5 \mathrm{~V} ;$ PCLK $=27.0 \mathrm{MHz}$ | - | 18 | - | mA |
| I/O Supply Voltage | $V_{\text {DDIO }}$ | 3.3V Operating range | 3.00 | 3.30 | 3.60 | V |
| Internal Supply Voltage | $V_{\text {DDINT }}$ | - | 3.00 | 3.30 | 3.60 | V |
| Internal Supply Current | $\mathrm{I}_{\text {DIINT }}$ | PCLK $=54.0 \mathrm{MHz}$ | - | 67 | - | mA |
| Internal Supply Current | $\mathrm{I}_{\text {DDINT }}$ | PCLK $=27.0 \mathrm{MHz}$ | - | 37 | - | mA |
| Input Current | $\mathrm{I}_{\mathrm{IN}}$ | - | -1 | - | 1 | $\mu \mathrm{A}$ |
| Hi-Z Output Leakage Current | $\mathrm{I}_{\mathrm{Oz}}$ | - | -1 | - | 1 | $\mu \mathrm{A}$ |
| Output Voltage, Logic High | $\mathrm{V}_{\mathrm{OH}}$ | $\mathrm{IOH}=-3 \mathrm{~mA}$ | $V_{\text {DDIO }}-0.4$ | - | - | V |
| Output Voltage, Logic Low | $\mathrm{V}_{\mathrm{OL}}$ | $\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$ | - | - | 0.4 | V |
| Input Voltage, Logic High | $\mathrm{V}_{1 \mathrm{H}}$ | $\mathrm{V}_{\text {DDIO }}=\operatorname{Max}(5.25 \mathrm{~V}$ or 3.6 V$)$ | 2.0 | - | - | V |
| Input Voltage, Logic Low | $\mathrm{V}_{\text {IL }}$ | $\mathrm{V}_{\text {DDIO }}=\mathrm{Min} .(4.75 \mathrm{~V}$ or 3.0 V$)$ | - | - | 0.8 | V |
| Input Capacitance | $C_{1}$ | $f=1 \mathrm{MHz}, \mathrm{V}_{\text {DDIO }}=0 \mathrm{~V}$ | - | - | 10 | pF |

Table 2-1: DC Electrical Characteristics (Continued)
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise shown.

| Parameter | Symbol | Conditions | Min | Typ | Max | Units |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| Output Capacitance | $\mathrm{C}_{\mathrm{O}}$ | $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{DDIO}}=0 \mathrm{~V}$ | - | - | 10 | pF |
| I/O Capacitance | $\mathrm{C}_{10}$ | $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{DDIO}}=0 \mathrm{~V}$ | - | - | 10 | pF |

### 2.3 AC Electrical Characteristics

Table 2-2: AC Electrical Characteristics
$V_{\text {DDIO }}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise shown.

| Parameter | Symbol | Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Video Clock Frequency | - | - | - | - | 54 | MHz |
| Video Clock Pulse Width Low | $t_{\text {PWL }}$ | - | 7.4 | - | - | ns |
| Video Clock Pulse Width High | $\mathrm{t}_{\text {PWH }}$ | - | 7.4 | - | - | ns |
| Video Input Data Setup Time | $\mathrm{t}_{\mathrm{S}}$ | - | 3 | - | - | ns |
| Video Input Data Hold Time | $t_{H}$ | - | 1 | - | - | ns |
| Video Output Data Delay Time | $\mathrm{t}_{\text {OD }}$ | with 10 pF loading | - | - | 13 | ns |
| Video Output Data Hold Time | $\mathrm{t}_{\mathrm{OH}}$ | with 10 pF loading | 3 | - | - | ns |
| Audio Clock Frequency |  | - | - | - | 6.144 | MHz |
| Audio Input Data Setup Time | $t_{s}$ | - | 3 | - | - | ns |
| Audio Input Data Hold Time | $t_{H}$ | - | 1 | - | - | ns |
| Audio Output Data Hold Time | $\mathrm{t}_{\mathrm{OH}}$ | with 10pF loading | 3 | - | - | ns |
| Audio Output Data Delay Time | $\mathrm{t}_{\mathrm{OD}}$ | with 10pF loading | - | - | 13 | ns |
| Address set up time | $\mathrm{t}_{\mathrm{AS}}$ | - | 3 | - | - | ns |
| Chip select set up time | $\mathrm{t}_{\text {ACS }}$ | - | 3 | - | - | ns |
| Read data access time | $\mathrm{t}_{\text {GQV }}$ | - | - | - | 10 | ns |
| Read data enable time | $\mathrm{t}_{\text {GQLZ }}$ | - | 1 | - | - | ns |
| Read data hold time | $t_{\text {RDH }}$ | - | 1 | - | - | ns |
| Read pulse width | $t_{\text {RD }}$ | - | 20 | - | - | ns |
| Read cycle time | $t_{\text {RC }}$ | - | 30 | - | - | ns |
| Write data set up time | $t_{\text {DS }}$ | - | 3 | - | - | ns |
| Write data hold time | $t_{\text {WDH }}$ | - | 1 | - | - | ns |

Table 2-2: AC Electrical Characteristics (Continued)
$\mathrm{V}_{\mathrm{DDIO}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise shown.

| Parameter | Symbol | Conditions | Min | Typ | Max | Units |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| Write pulse width | $t_{\text {WD }}$ | - | 20 | - | - | ns |
| Write cycle time | $t_{\text {WC }}$ | - | 30 | - | - | ns |
| Reset Pulse Width | $t_{\text {RESET }}$ | - | 1 | - | - | us |
| Device Latency | - | Multiplexer Mode | 13 | 13 | 13 | PCLKs |
|  | - | Demultiplexer Mode | 10 | 10 | 10 | PCLKs |

NOTE: The following signals have the same AC electrical characteristics as the audio inputs and outputs: WCINA, WCINB, SAFA, SAFB, VFLA, VFLB, UDA, UDB, CSA, CSB, WCOUTA, WCOUTB.


Figure 2-1: Video Data Input Setup \& Hold Times


Figure 2-2: Video Data Output Delay \& Hold Times


Figure 2-3: Host Interface Timing Diagram


Figure 2-4: Reset Timing Diagram

### 2.4 Solder Reflow Profiles



Figure 2-5: Maximum Pb-Free Solder Reflow Profile (Preferred)


Figure 2-6: Standard Eutectic Solder Reflow Profile

## 3. Detailed Description

The GS9023B has two main modes of operation: Multiplex Mode and Demultiplex Mode. In Multiplex Mode, which is selected by setting the DEMUX/MUX input pin LOW, digital audio is embedded into a digital video stream. In Demultiplex Mode, which is selected by setting the DEMUX/ $\overline{M U X}$ input pin HIGH, digital audio is extracted from a digital video stream. Table 4-1 and Table 4-2 contain Host Interface Register descriptions for the Multiplex and Demultiplex Modes respectively.

### 3.1 Multiplex Mode

### 3.1.1 Video Clock Input

A master video clock must be supplied to the PCLK pin corresponding to the selected video standard. The supported video input standards and corresponding clock frequencies are listed in Table 3-1.

### 3.1.2 Video Data Input

The video data DIN[9:0] is clocked into the GS9023B on the rising edge of PCLK. The video clock frequency must correspond to the video input standard selected. This is done via the "VSEL" bit of Host Interface Register \#0h. When "VSEL" is LOW, the video input standard is selected by the VM[2:0] and TRS input pins. When "VSEL" is HIGH, the video input standard is selected by the "VMOD[2:0]" and "D2_TRS" bits in Host Interface Register \#0h. The supported video input standards are listed in Table 3-1.

After the user has specified the video input standard via the VM[2:0] and TRS pins or by setting Host Interface Register \#0h, the GS9023B performs video standard detection to verify that the input video stream corresponds to the selected standard. The LOCK output pin and the "LOCK" bit of Host Interface Register \#0h are then set HIGH if at least one of the audio channel enable bits "CHACT(4-1)" of Host Interface Register \#1h is HIGH and the start of a video frame is detected.

NOTE: The user must ensure that the video input format correctly corresponds to the video format being provided to the GS9023B. For 8-bit video operation, the "8BIT_SEL" bit of the Host Interface Register \#2h must be set HIGH.

Table 3-1: Video Input Formats

| Video Standard | Serial Digital Data Rate (Mbps) | PCLK <br> Frequency (MHz) | $\begin{aligned} & \text { VM[2] or } \\ & \text { "VMOD[2]" } \end{aligned}$ | VM[1] or "VMOD[1]" | $\begin{aligned} & \text { VM[0] or } \\ & \text { "VMOD[0]" } \end{aligned}$ | $\begin{gathered} \text { TRS or } \\ \text { "D2_TRS" } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 525/D2 (SMPTE259M) | 143 | 14.3 | 0 | 0 | 0 | 0 |
| 525/D2 (SMPTE244M) | 143 | 14.3 | 0 | 0 | 0 | 1 |
| 525/D1 | 270 | 27.0 | 0 | 0 | 1 | 0 |
| Reserved | - | - | 0 | 0 | 1 | 1 |
| 525/16:9 | 360 | 36.0 | 0 | 1 | 0 | 0 |
| Reserved | - | - | 0 | 1 | 0 | 1 |
| 525/4:4:4:4 (System \#1) | 540 | 54.0 | 0 | 1 | 1 | 0 |
| Reserved | - | - | 0 | 1 | 1 | 1 |
| 625/D2 (with TRS) | 177 | 17.7 | 1 | 0 | 0 | 0 |
| 625/D2 (without TRS) | 177 | 17.7 | 1 | 0 | 0 | 1 |
| 625/D1 | 270 | 27.0 | 1 | 0 | 1 | 0 |
| Reserved | - | - | 1 | 0 | 1 | 1 |
| 625/16:9 | 360 | 36.0 | 1 | 1 | 0 | 0 |
| Reserved | - | - | 1 | 1 | 0 | 1 |
| 625/4:4:4:4 (System \#2) | 540 | 54.0 | 1 | 1 | 1 | 0 |
| 625/4:2:2P (System \#4) | 540 | 54.0 | 1 | 1 | 1 | 1 |

### 3.1.2.1 Synchronous Switch of Video Input

When a 525-line video input to the GS9023B undergoes a synchronous switch between two video sources, the two video sources may have 5-frame sequences which are not aligned. In this case, the GS9023B may not correctly detect the new 5 -frame sequence, and the internal FIFO may overflow/underflow continuously. To avoid this problem, it is recommended that the user sets bits 5, 6, and 7 of Host Interface Register \#2h HIGH (see bit descriptions in Table 4-1). Setting these bits HIGH will permit the device to reset the internal audio sample buffer when an overflow/underflow condition is detected and mute the embedded audio packets during this reset.

### 3.1.3 Video Data Output

The video signal is output at the DOUT[9:0] pins. The video signal is synchronized to the rising edge of PCLK. When the GS9023B is properly configured, audio packets, extended audio packets, audio control packets and arbitrary data packets are multiplexed into the output video signal. When the video signal is a 525 line or 625 line D2 format, TRS information is added to the video signal if the TRS input pin or the "D2_TRS" and "VSEL" bits of Host Interface Register \#0h are HIGH. EDH packets can also be inserted into the video signal by setting the EDH_INS pin HIGH or by setting the "EDHON" bit HIGH of Host Interface Register \#1h. When selected, the GS9023B inserts EDH packets according to SMPTE RP165.

NOTE: Active picture and full field data words are updated from recalculated values but error flag information is replaced with the values programmed in Host Interface Registers \#Eh and \#Fh.

NOTE: In the 525/4:4:4:4 video standard, EDH packets should not be inserted as this can lead to TRS signal corruption. When EDH packets are not inserted, the "EDHDEL" bit of Host Interface Register \#0h controls the deletion of EDH packets. When the "EDHDEL" bit is set LOW, EDH packets are deleted from the incoming video signal. When "EDHDEL" is set HIGH, EDH packets pass through the device unchanged.

NOTE: "EDHDEL" functionality is valid only when the "CASCADE" bit of Host Interface Register \#4h is LOW.

### 3.1.4 Audio Clock Input

A master audio clock ( 128 fs : 6.144 MHz ) must be supplied to the ACLK pin. This clock must be synchronized with the video signal input to the GS9023B. An audio word clock must also be supplied (fs: 48 kHz ) to the WCINA/B pins when using non-AES/EBU audio. The two 48 kHz word clocks must also be synchronized to the video signal.

### 3.1.5 Audio Data Input

The serial audio data for channels 1 and 2 are input to the AINA pin. The serial audio data for channels 3 and 4 are input to the AINB pin. The GS9023B can multiplex 20 or 24 bit audio data samples. When the AUXEN pin or bit "A4ON" of Host Interface Register \#1h is HIGH, the device processes 24 bit audio samples. When the AUXEN pin or "A4ON" register bit is LOW, the device processes 20 bit audio samples. On power up, the "A4ON" bit default is LOW.

The GS9023B offers five predefined audio data input formats, selected via the AM[2:0] pins, which are listed in Table 3-2 and illustrated in Figure 3-1. The first four predefined formats relate to non-AES/EBU audio data while the fifth format corresponds to the AES/EBU audio format. The WCINA and WCINB pins should be grounded when inputting AES/EBU audio data as they are not used.

The GS9023B supports muting of the audio data input. Multiplexed audio and extended data packets for all channels are forced to zero when the MUTE pin or "MUTE" bit of Host Interface Register \#4h is set HIGH.

When inputting AES/EBU data, the CRC byte and parity bit will be recalculated and inserted automatically.

### 3.1.6 Control Code Input

When inputting non-AES/EBU audio data, the validity (V), user data (U) and channel status (C) bits of each audio data channel must be input to the corresponding pins (VFLA, VFLB; UDA, UDB; CSA, CSB). The signals must be updated on the rising edge of WCINA/B and remain constant for the entire word clock period ( 64 ACLK cycles).

When inputting non-AES/EBU audio data, the SAFA and SAFB pins must be high for one frame out of 192 frames received to indicate the start of frame condition.

When inputting AES/EBU audio data, the control code input pins should be grounded as they are not used.

Table 3-2: Audio Input Formats

| FORMATS | WCINA/B | AM[2] | AM[1] | AM[0] |
| :---: | :---: | :---: | :---: | :---: |
| AIN-MODE 0 | User Supplied | 0 | 0 | 0 |
| AIN-MODE 1 | User Supplied | 0 | 0 | 1 |
| AIN-MODE 2 | User Supplied | 0 | 1 | 0 |
| AIN-MODE 3 | User Supplied | 0 | 1 | 1 |
| AIN-AES/EBU | Not Used | 1 | 0 | 0 |
| Not Used | - | 1 | 1 | 0 |
| Not Used | - | 1 | 1 | 1 |
| Not Used | - | 1 | 1 |  |


Figure 3-1: Audio Input Format Timing Diagram
GS9023B GENLINX® II GS9023B Embedded Audio
Data Sheet
37954-2

### 3.1.7 Audio Data Packets

The GS9023B can multiplex up to four audio channels. The channels are selectable via the "CHACT(4-1)" bits of Host Interface Register \#1h. The audio group (Audio packet data ID) for each device is configured in "AD20ID[3:0]" of Host Interface Register \#3h. On power up, the four audio channels and audio group 1 are selected by default.

By setting all the "CHACT(4-1)" bits in Host Interface Register \#1h to zero, the GS9023B will be in bypass mode whereby any existing audio data packets, with the same audio group ID or otherwise, will pass through the device unchanged and no new audio data packets will be embedded.

NOTE: Do not rely on default value. Reprogram on power up or reset.
The "CASCADE" bit in Host Interface Register \#4h controls the manner in which multiplexing is performed. When "CASCADE" is LOW, the GS9023B deletes all existing ancillary packets. New packets are multiplexed at the first location after the end of active video (EAV) in the horizontal ancillary space (HANC). See Figure 3-2.

When "CASCADE" is HIGH, the GS9023B multiplexes packets at the first free location in the horizontal ancillary (HANC) space after the end of active video (EAV) if there is sufficient space remaining to insert the packet. The GS9023B does not check if existing audio group samples are present in the video signal. Use caution in applications where the video signal contains existing audio packets to avoid adding identical group samples. See Figure 3-3.

The GS9023B assumes that the ancillary space from the first free location is empty to the start of active video (SAV). Existing ancillary data packets (inserted by previous devices) in the video signal must be contiguous from the beginning of the HANC space or the insertion of a new audio data packet may overwrite existing data. See Figure 3-4.


Video Signal after GS9023B Insertion of Audio Group 1 ("CASCADE" = LOW)
Figure 3-2: Insertion of Audio Group 1, CASCADE=LOW

| $\underset{\underset{山}{4}}{\stackrel{\rightharpoonup}{4}}$ |  |  |  |  | Enpty |
| :---: | :---: | :---: | :---: | :---: | :---: |



Video Signal after GS9023B Insertion of Audio Group 3 ("CASCADE" = HIGH)
Figure 3-3: Insertion of Audio Group 3, CASCADE=HIGH


Video signal after GS9023B Insertion of Audio Group 1 ("CASCADE" = HIGH)
Figure 3-4: Insertion of Audio Group 1, CASCADE=HIGH


Figure 3-5: Multiplex Mode Cascadable Architecture

In cases where an audio data packet does not fit inside the remaining HANC space, the audio packet is discarded. In this case, the "ADERR" bit of Host Interface Register \#7h is HIGH indicating an audio packet multiplexing error. The error bit is cleared once accessed by the Host Interface.

By cascading four GS9023B devices, it is possible to multiplex up to 16 audio channels (according to SMPTE 272) in a component video signal as shown in Figure 3-5.

NOTE 1: In the 525/D1 video format, only 15 channels of 24 bit audio can be multiplexed.

NOTE 2: In cascade mode, audio samples embedded by the first GS9023B may be delayed by up to one audio sample with respect to the audio embedded by cascaded devices.

NOTE 3: When multiplexing audio data into a 525 -line video signal at 29.97 fps , the GS9023B establishes a 5-frame sequence based on the relationship between the incoming audio and the input video timing. When multiple GS9023Bs are used to multiplex several audio channels, the video signal will undergo a processing delay of 13 video clock cycles through each device. This may affect the timing relationship between the devices such that a different 5-frame sequence may be established in a subsequent GS9023B. For example, Figure 3-6 shows two GS9023Bs cascaded to multiplex eight audio channels. The video signal will be delayed 13 video clock cycles in the first encoder. This timing discrepancy may cause the second GS9023B to establish a different 5 -frame sequence from the first.


Figure 3-6: Multiplexing 2 Audio Groups using 2 GS9023Bs


Figure 3-7: Audio Data Packet Structure with 4 Audio Channels, 1 Audio Group

Cascade operation is not recommended with a composite video signal, as there is insufficient HANC space for more than four channels of audio. Audio packet insertion is not guaranteed in this case.

The audio data packet structure as described in SMPTE 272M is shown in Figure 3-7.
The audio data packets words are defined as follows:
ADF: Ancillary Data Flag. The ancillary data flag marks the beginning of an ancillary packet and is automatically generated by the GS9023B.

DID: Data ID. Audio data packets corresponding to an audio group are selected by programming "A20ID[3:0]" of Host Interface Register \#3h for audio groups 1 to 4 as follows:

Group 1: Fh (2FFh)
Group 2: Dh (1FDh)
Group 3: Bh (1FBh)
Group 4: 9h (2F9h)
NOTE: The six most significant bits of the DID are internally generated by the GS9023B.
DBN: Data Block Number. The data block number is used when data blocks within a common data ID are to be linked or to distinguish consecutive data blocks within a common data ID. The data block number continuously increments from 1 to 255 and is generated automatically by the GS9023B.

DC: Data Count. The data count represents the number of user data words to follow (maximum of 255 words). The data count is automatically generated by the GS9023B.

CS: Checksum. The checksum consists of nine bits. The checksum is used to determine the validity of the words data ID through user data. It is the sum of the nine least significant bits of the words data ID through user data. The checksum is automatically generated by the GS9023B.

The serial audio data samples, are mapped into three contiguous ancillary data words ( $\mathrm{X}, \mathrm{X}+1, \mathrm{X}+2$ ) as shown in Table 3-3.

Table 3-3: Audio Packet Data Sample Structure

| Bit | Word X | Word X+1 | Word X+2 |
| :---: | :---: | :---: | :---: |
| b9 | not b8 | not b8 | not b8 |
| b8 | aud 5 | aud 14 | P |
| b7 | aud 4 | aud 13 | C |
| b6 | aud 3 | aud 12 | U |
| b5 | aud 2 | aud 11 | V |
| b4 | aud 0 (LSB) | aud 10 | aud 19 (MSB) |
| b3 | aud 9 |  |  |

Table 3-3: Audio Packet Data Sample Structure (Continued)

| Bit | Word $\mathbf{X}$ | Word X+1 | Word X+2 |
| :---: | :---: | :---: | :---: |
| b2 | ch 1 (MSB) | aud 8 | aud 17 |
| b1 | ch $0($ LSB $)$ | aud 7 | aud 16 |
| b0 | Z | aud 6 | aud 15 |

Table 3-4: Channel Identification Within The Audio Groups

| CH1 | CH0 | GROUP 1 | GROUP 2 | GROUP 3 | GROUP 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | Channel 1 | Channel 5 | Channel 9 | Channel 13 |
| 0 | 1 | Channel 2 | Channel 6 | Channel 10 | Channel 14 |
| $\mathbf{1}$ | 0 | Channel 3 | Channel 7 | Channel 11 | Channel 15 |
| $\mathbf{1}$ | 1 | Channel 4 | Channel 8 | Channel 12 | Channel 16 |

The audio packet data sample bits are defined as follows:
Z: The Z flag is set HIGH at the same sample coincident with the beginning of a new AES channel status block (frame 0 ) and is otherwise set LOW. In non-AES/EBU data input formats this bit is set to the value of the SAFA/B input pins at the rising edge of WCINA/B.
ch[1:0]: Identification of the channels in an audio group as shown in Table 3-4.
aud[19:0]: Twos complement linearly represented audio data. The audio data is input from the AINA and AINB pins.

V: AES/EBU sample validity bit. If the audio sample is valid the bit is set LOW. If the audio sample is invalid, the bit is set HIGH. In non-AES/EBU data input formats, this bit is set to the value of the VFLA/B input pins at the rising edge of WCINA/B.

U: AES/EBU user bit. In non-AES/EBU data input formats, this bit is set to the value of the UDA/B input pins at the rising edge of WCINA/B.

C: AES/EBU audio channel status bit. In non-AES/EBU data input formats this bit is set to the value of the CSA/B input pins at the rising edge of WCINA/B.
$P$ : Even parity for the 26 previous bits in the audio data sample (excludes b9 in the first and second words).

NOTE: The P bit is not the same as the AES/EBU parity bit. This bit is automatically generated by the GS9023B.

### 3.1.8 Extended Audio Data Packets

The GS9023B can multiplex 20 or 24 bit audio samples. For 24 bit audio samples, the 20 MSBs of a 24 bit audio sample are contained in the audio data packets and the 4 LSBs are contained in an extended audio data packet as defined in SMPTE 272. The extended
audio data packet is multiplexed immediately following the corresponding audio data packet. See Figure 3-8.


Video signal before GS9023B


Video signal after GS9023B Insertion of Audio Group 2 \& Extended Audio Group 2 ("CASCADE" = HIGH)

Figure 3-8: Insertion of Audio Group 2 with Extended Audio, CASCADE=HIGH


Figure 3-9: Extended Audio Data Packet Structure
To select 24 bit audio operation, the user must set the AUXEN pin or the "A4ON" bit of Host Interface Register \#1h HIGH. When the AUXEN pin or "A4ON" bit is HIGH, the GS9023B does not multiplex the audio data packet and the associated extended audio data packet if there is insufficient room for both in the HANC space. In this case, the "ADERR" bit of Host Interface Register \#7h is set HIGH, indicating an audio packet multiplexing error. The error bit is cleared when accessed by the Host Interface. The audio group (Extended packet data ID) for each device is configured in "AD4ID[3:0]" of Host Interface Register \#3h. On power up, audio group 1 is selected by default.

By cascading four GS9023B devices, it is possible to multiplex up to 16 audio channels (according to SMPTE 272) in a component video signal as shown in Figure 3-5.

NOTE: In the 525/D1 video format, only 15 channels of 24 bit audio can be multiplexed in the cascade configuration.

The extended audio data packet structure as described in SMPTE 272M is shown in Figure 3-9.

The extended audio data packets words are defined as follows:
ADF: Ancillary Data Flag. The ancillary data flag marks the beginning of an ancillary packet and is automatically generated by the GS9023B.

DID: Data ID. Extended audio data packets corresponding to an audio group are selected by programming "A4ID[3:0]" of Host Interface Register \#3h for audio groups 1 to 4 as follows:

Group 1: Eh (1FEh)
Group 2: Ch (2FCh)
Group 3: Ah (2FAh)
Group 4: 8h (1F8h)
NOTE: The six most significant bits of the DID are automatically generated by the GS9023B.

DBN: Data Block Number. The data block number is used when data blocks within a common data ID are to be linked or to distinguish consecutive data blocks within a common data ID. The data block number continuously increments from 1 to 255 and is generated automatically by the GS9023B.

DC: Data Count. The data count represents the number of user data words to follow (maximum of 255 words). The data count is automatically generated by the GS9023B.

DATA WORDS: The extended audio data samples are mapped into ancillary data words as shown in Table 3-5.

Table 3-5: Extended Audio Packet Data Sample Structure

| Bit | ANC Data Word |
| :--- | :--- |
| b9 | not b8 |
| b8 | a |
| b7 | y3 (MSB) |
| b6 | y2 |
| b5 | y1 |
| b4 | y0 (LSB) |
| b3 | x3 (MSB) |
| b2 | x2 |
| b1 | x1 |
| b0 | x0 (LSB) |

The extended audio packet data sample bits are defined as follows:
x[3:0]: Auxiliary data from subframe 1.
y[3:0]: Auxiliary data from subframe 2.
a: Address pointer. LOW for channels 1 and 2, and HIGH for channels 3 and 4. This bit is internally generated by the GS9023B.

CS: Checksum. The checksum consists of nine bits. The checksum is used to determine the validity of the words data ID through user data. It is the sum of the nine least significant bits of the words data ID through user data. The checksum is automatically generated by the GS9023B.

### 3.1.9 Audio Control Packets

The audio control packet structure is detailed in SMPTE 272M. The audio group (Audio control packet data ID) for each device is configured in "ACID[3:0]" of Host Interface Register \#4h. The Audio control parameters are configured in Host Interface Registers \#Ah, \#Bh, \#Ch and \#Dh. The audio control packet multiplexing positions for the various video standards are listed in Table 3-6. In a component video signal, a maximum of 4 audio control packets can be multiplexed in a cascade connection. On power up, audio group 1 is selected by default.

The GS9023B determines if multiplexing is possible by searching for the first free location in the HANC space after the signal EAV and calculates if there is sufficient remaining space to insert the audio packet. Existing ancillary data packets (inserted by previous devices) in the video signal must be contiguous from the beginning of the HANC space or the insertion of a new audio data packet may overwrite existing data. In cases where an audio control data packet does not fit inside the remaining HANC space, the audio control packet is discarded. In this case, the "ACERR" bit of Host Interface Register \#7h is HIGH indicating an audio control packet multiplexing error. The error bit is cleared when accessed by the Host Interface.

The audio control packet structure as described in SMPTE 272M is shown in Figure 3-10.

Table 3-6: Multiplexing Positions for Audio Control Packets

| Video Standard | Multiplexing Lines | Horizontal <br> Starting Position | Horizontal Ending <br> Position |
| :--- | :--- | :--- | :--- |
| $525 / \mathrm{D} 2$ | $12 / 275$ | 795 | 849 |
| $525 / \mathrm{D} 1$ | $12 / 275$ | 1444 | 1711 |
| $525 / 16: 9$ | $12 / 275$ | 1924 | 2283 |
| $525 / 4: 4: 4: 4$ | $12 / 275$ | 2884 | 3427 |
| $625 / \mathrm{D} 2$ | $8 / 321$ | 972 | 1035 |
| $625 / \mathrm{D} 1$ | $8 / 321$ | 1444 | 1723 |
| $625 / 16: 9$ | $8 / 321$ | 2277 | 2299 |
| $625 / 4: 4: 4: 4$ | $8 / 321$ | 2884 | 1723 |
| $625 / 4: 2: 2 \mathrm{P}$ | $15 / 641$ | 1444 |  |



* The ancillary data flag, ADF, is one word in composite systems (ANSI/SMPTE 259M) and three words in component systems (ANSI/SMPTE 125M).

Figure 3-10: Audio Control Packet Structure
The audio control packets words are defined as follows:
ADF: Ancillary Data Flag. The ancillary data flag marks the beginning of an ancillary packet and is automatically generated by the GS9023B.

DID: Data ID. Audio control packets corresponding to an audio group are selected by programming "ACID[3:0]" of Host Interface Register \#4h for audio groups 1 to 4 as follows:

Group 1: Fh (1EFh)
Group 2: Eh (2EEh)
Group 3: Dh (2EDh)
Group 4: Ch (1ECh)
NOTE: The six most significant bits of the DID are automatically generated by the GS9023B.

DBN: Data Block Number. The data block number is used when data blocks within a common data ID are to be linked or to distinguish consecutive data blocks within a common data ID. The data block number continuously increments from 1 to 255 and is generated automatically by the GS9023B.

DC: Data Count. The data count represents the number of data words to follow. The data count has a fixed value of 212 h and is automatically generated by the GS9023B.

AF1-2: Audio frame number for channels 1 and 2.
AF3-4: Audio frame number for channels 3 and 4.
For an audio sampling frequency of 48 kHz , the audio frame numbers are sequenced from one to five for 525 line video standards and fixed at one for 625 line video standards. The audio frame numbers, AF1-2 and AF3-4, are automatically generated by the GS9023B and set to the same value. The sequence count is started at one at the first frame after 'lock' is achieved.

RATE: Sampling frequency. The GS9023B operates at a fixed sampling frequency of 48 kHz . The audio control packet RATE word structure is shown in Table 3-7.

Table 3-7: Audio Control Packet Rate Word Structure

| Bit | Rate Word |
| :--- | :--- |
| b9 | not b8 |
| b8 | not used (fixed to 0) |
| b7 | y2 (MSB, fixed to 0) |
| b6 | y1 (fixed to 0) |
| b5 | y0 (LSB, fixed to 0) |
| b4 | bsync |
| b3 | x2 (MSB, fixed to 0) |
| b2 | x1 (fixed to 0) |
| b1 | x0 (LSB, fixed to 0) |
| b0 | async |

The audio control packet RATE word bits are defined as follows:
$\mathbf{x}[2: 0], \mathrm{y}[2: 0]$ : Audio sampling rate for subframe 1 and 2 respectively. Fixed at 48 kHz .
async, bsync: Set LOW when each audio channel pair is operating synchronously and set HIGH when operating asynchronously. Forced LOW due to synchronous operation.

ACT: The ACT word indicates the active group channels. The audio control packet ACT word structure is shown in Table 3-8.

Table 3-8: Audio Control Packet ACT Word Structure

| Bit | Act Word |
| :--- | :--- |
| b9 | not b8 |
| b8 | p |

Table 3-8: Audio Control Packet ACT Word Structure (Continued)

| Bit | Act Word |
| :--- | :--- |
| b7 | reserved (set to 0) |
| b6 | reserved (set to 0) |
| b5 | reserved (set to 0) |
| b4 | reserved (set to 0) |
| b3 | a4 |
| b2 | a3 |
| b1 | a2 |
| b0 | a1 |

The audio control packet ACT word bits are defined as follows:
p: Even parity for bits b0 to b7.
a(4-1): Individual active channel status indicator. The bits correspond directly to the "CHACT(4-1)" bits of Host Interface Register \#1h. The bits are set HIGH for each active channel in a given audio group. The correlation of the active channels for the four active audio groups is shown in Table 3-9.

Table 3-9: Audio Control Packet Active Channel Configuration

|  | GROUP1 | GROUP2 | GROUP3 | GROUP4 |
| :--- | :--- | :--- | :--- | :--- |
| CHACT 1 | Channel 1 | Channel 5 | Channel 9 | Channel 13 |
| CHACT 2 | Channel 2 | Channel 6 | Channel 10 | Channel 14 |
| CHACT 3 | Channel 3 | Channel 7 | Channel 11 | Channel 15 |
| CHACT 4 | Channel 4 | Channel 8 | Channel 12 | Channel 16 |

DELx(0-2): Indicates the amount of accumulated audio processing delay relative to video, measured in audio sample intervals for each of the channels. Positive values indicate that the video leads the audio. The audio control packets delay word structure is shown in Table 3-10.

Table 3-10: Audio Control Packet Delay Structure

| Bit | DELx0 | DELx1 | DELx2 |
| :---: | :---: | :---: | :--- |
| b9 | not b8 | not b8 | not b8 |
| b8 | dela/b 7 | dela/b 16 | dela/b 25 (Sign) |
| b7 | dela/b 6 | dela/b 15 | dela/b 24 (MSB) |
| b6 | dela/b 5 | dela/b 14 | dela/b 23 |
| b5 | dela/b 4 | dela/b 13 | dela/b 22 |
| b4 | dela/b 2 | dela/b 12 | dela/b 21 |
| b3 | dela/b 1 | dela/b 11 | dela/b 20 |
| b1 | dela/b 0 (LSB) | dela/b 10 | dela/b 19 |
| b0 | e | dela/b 8 | dela/b 17 |

The audio control packet delay word bits are defined as follows:
e: Indicates valid audio delay data when set HIGH. Corresponds to the "ACDLY" bit of Host Interface Register \#Dh.
dela/b[25:0]: The audio channel pair delay is programmed in bits "DELA/B[25:0]" of Host Interface Register \#Ah, \#Bh, \#Ch and \#Dh. DELA[25:0] corresponds to the delay for channels 1 and 2. "DELB[25:0]" corresponds to the delay for channels 3 and 4.

RSRV: Reserved. The word is fixed at 200h and is automatically generated by the GS9023B.

CS: Checksum. The checksum consists of nine bits. The checksum is used to determine the validity of the words data ID through user data. It is the sum of the nine least significant bits of the words data ID through user data. The checksum is automatically generated by the GS9023B.

### 3.1.10 Arbitrary Data Packets

The GS9023B is capable of multiplexing arbitrary data packets according to SMPTE 291M. Typically, this consists of linear time code data (LTC), vertical interval time code data (VITC) or other data which is multiplexed once per field. The user must input the 9 LSBs starting from the secondary data identification (SDID) word to the last user data word (UDW) of the ancillary data packet containing arbitrary data. The CS word and bit 10 of all words in the packet are internally generated.

The arbitrary data packet data ID is configured in "PKTID[7:0]" of Host Interface Register \#5h. To process arbitrary data, the user must set the "PKON" bit of Host Interface Register \#1h. Also, the user must specify the line number in "PKTLINE[7:0]" in Host Interface Register \#9h. This value corresponds to the line in video field 1 in which the user wants the arbitrary data packet to be multiplexed. The corresponding line in field 2 is automatically selected for arbitrary data packet multiplexing. Arbitrary data is typically multiplexed during the active portion of the line in the vertical blanking interval (VBI). Care should be taken to avoid selecting a line in the active picture. Table 3-11 lists recommended multiplexing lines according to the video standard.

NOTE: In field \#1, the line number is offset by one from the value configured in "PKTLINE[7:0]".Arbitrary data is input to the GS9023B as shown in Figure 3-11. The data is stored in an internal arbitrary data packet buffer which is cleared at the end of every field. Arbitrary data must be written to the buffer before the line number specified in "PKTLINE[7:0]" is reached in order for the packet to be multiplexed. Data is input to the PKT[8:0] pins and clocked in on the rising edge of PCLK. PKTEN must be set HIGH one PCLK cycle before the data at the PKT[8:0] inputs is valid. PKTEN must go LOW one PCLK cycle before the last user data word (UDW) is input to the PKT[8:0] inputs. Parity (bit 8) for each UDW can be enabled by setting the "PKTPRTY" bit of Host Interface Register \#8h to HIGH. When "PKTPRTY" is HIGH, data input at PKT[8] is overwritten by the parity bit.

Up to 255 words (253 UDWs + SDID + DC) can be input and multiplexed once per field.
The arbitrary data packet structure as described in SMPTE 291M is shown in
Figure 3-11.

Table 3-11: Multiplex Position For Arbitrary Data Packet

| Video Standard | Recommended Multiplex <br> Line | Horizontal Starting <br> Position (Word \#) | Horizontal Ending Position <br> (Word \#) |
| :---: | :---: | :---: | :---: |
| $525 / D 2$ | $9 / 272$ | 340 | 360 |
| $525 / D 1$ | $14 / 277$ | 0 | 1439 |
| $525 / 16: 9$ | $14 / 277$ | 0 | 1919 |

NOTE: 525/4:4:4:4 and all 625 line video standards are not supported.

* Horizontal Starting Position 0 is the first word of the active picture.


NOTE: 1 - The ancillary data flag, ADF, is one word in composite systems (ANSI/SMPTE 259M) and three words in component systems (ANSI/SMPTE 125M).
2 - The ADF, DID and CHKSUM words are automatically generated by the GS9023B.
Figure 3-11: Arbitrary Data Packet Input Timing Diagram
The arbitrary data packet words are defined as follows:
ADF: Ancillary Data Flag. The ancillary data flag marks the beginning of an ancillary packet and is automatically generated by the GS9023B.

DID: Data ID. Configured in "PKTID[7:0]" of Host Interface Register \#5h. The two most significant bits are internally generated by the GS9023B.

SDID: Secondary Data ID. The Secondary Data ID is handled as user input data.
DC: Data Count. The data count represents the number of user data words to follow, up to a maximum of 255 words. The data count is handled as user input data. For the GS9023B the maximum data count is 253 since the total number of words that can be input is 255 less the SDID and DC words.

## UDW: User Data Word.

CS: Checksum. The checksum consists of nine bits. The checksum is used to determine the validity of the words data ID through user data. It is the sum of the nine least significant bits of the words data ID through user data. The checksum is automatically generated by the GS9023B.

### 3.1.11 Error Detection

The GS9023B provides error status information in Host Interface Register \#7h as described in Table 4-1. All errors are cleared when Host Interface Register \#7h is read.

### 3.2 Demultiplex Mode

### 3.2.1 Video Clock Input

A master video clock must be supplied to the PCLK pin corresponding to the selected video signal. The supported video input standards and corresponding clock frequencies are listed in Table 3-1.

### 3.2.2 Video Data Input

The video data DIN[9:0] is clocked in to the GS9023B on the rising edge of PCLK. The video clock frequency must correspond to the video input standard selected. This can be done with the VM[2:0] and TRS input pins or selected via the "VSEL" bit of Host Interface Register \#0h. When "VSEL" is set HIGH, the video input standard is selected by "VMOD[2:0]" and "D2_TRS" in Host Interface Register \#0h. The supported video input standards are listed in Table 3-1.

After the user has specified the video input standard via the VM[2:0] and TRS pins or in Host Interface Register \#0h, the GS9023B performs video standard detection to verify that the input video stream corresponds to the selected standard. The GS9023B then performs a 'lock' procedure, as selected by the "ACTSEL" bit of Host Interface Register \#4h, to determine if the audio is synchronous to the video. When "ACTSEL" is LOW, the GS9023B counts the number of audio samples present in a frame or multiple frames, depending on the video standard selected. 'Lock' is achieved if the required number of samples are detected for 48 kHz synchronous audio. When "ACTSEL" is HIGH, the GS9023B 'locks' by detecting the presence of an audio control packet corresponding to the DID configured in "ACID[3:0]" of Host Interface Register \#4h and occurring at the expected line and position as listed in Table 3-6. If the video signal does not contain audio control packets, 'lock' will not occur. Once 'lock' is achieved the LOCK output pin and the "LOCK" bit of Host Interface Register \#0h are set HIGH and audio demultiplexing begins. The LOCK output pin and the "LOCK" bit stay active regardless of the number of samples in the video stream after 'lock' is achieved. The GS9023B drops out of 'lock' when there are no more packets detected in the video stream.

### 3.2.3 Video Data Output

The video signal is output at the $\mathrm{D}_{\text {OUT[9:0] }}$ pins. The video signal is synchronized to the rising edge of PCLK. The GS9023B is capable of removing audio, extended audio, arbitrary and audio control packets from the video stream. To remove packets, the user must set the ANCI pin HIGH or set the "VSEL" and "ADEL" bits of Host Interface Register \#0h HIGH. The GS9023B then removes each packet having a DID corresponding to either the audio DID, the extended audio DID or the arbitrary data DID stored in the Host Interface Registers from the video stream. See Figure 3-12.

NOTE: The GS9023B passes EDH packets through unchanged in the Demultiplex Mode. If any audio, extended audio, arbitrary or audio control packets are deleted by the GS9023B, the EDH CRC words become invalid.

When the ANCI pin or＂ADEL＂bit is LOW，all ancillary data packets remain in the video signal．See Figure 3－13．

TRS can also be removed from a 525／625 D2 video signal when the TRS pin is set HIGH or the＂VSEL＂and＂D2＿TRS＂bits of Host Interface Register \＃0h are set HIGH．

| $\underset{山}{\underset{\sim}{7}}$ |  |  | $\begin{gathered} N \\ \text { 응 } \\ \frac{0}{2} \\ \frac{0}{\top} \end{gathered}$ |  | Empty |
| :---: | :---: | :---: | :---: | :---: | :---: |



Video signal after GS9023B Removal of Audio Group 1 \＆Extended Audio Group 1 （ANCI＝HIGH or＂VSEL＂and＂ADEL＂＝HIGH）

Figure 3－12：Removal of Audio Group 1 with Extended Audio，ADEL＝HIGH

| $\underset{\underset{山}{\underset{~}{*}}}{\stackrel{\rightharpoonup}{2}}$ | 으울 |  |  |  | Ephpty | ふ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Video signal before GS9023B


Video signal after GS9023B Removal of Audio Group 1 \＆Extended Audio Group 1 （ANCI＝LOW or＂VSEL＂＝HIGH and＂ADEL＂＝LOW）

Figure 3－13：Removal of Audio Group 1 with Extended Audio，ADEL＝LOW

## 3．2．4 Audio Clock Input

The user must input a master audio clock（ 128 fs ： 6.144 MHz ）at the ACLK clock terminal． This clock must be synchronized with the video signal input to the GS9023B．The audio word clock inputs ${W C_{\text {INA }}}$ and ${W C_{\text {INB }}}$ must be grounded．

NOTE：The long term jitter present on the ACLK must be less than half the audio clock period．

### 3.2.5 Audio Data Output

The serial audio data for channels 1 and 2 are output at the $A_{\text {OUTA }}$ pin. The serial audio data for channels 3 and 4 are output at the $A_{\text {OUTB }}$ pin. Both outputs are synchronized to the rising edge of ACLK.

The GS9023B can demultiplex 20 or 24 bit audio data samples. When 24 bit audio samples are detected, the AUXEN pin and bit "A4ON" of Host Interface Register \#1h are set HIGH. When 20 bit audio samples are detected the AUXEN pin and "A4ON" register bit are set LOW. When AUXEN and "A4ON" are LOW, bits 4-7 of the AES/EBU output data format are set to " 0 ". In the non-AES/EBU formats, bits 0-3 are set to " 0 ". See Figure 3-14.

The GS9023B offers five predefined audio data output formats, selected via the AM[2:0] pins, which are listed in Table 3-12 and illustrated in Figure 3-14. The first four predefined formats relate to non-AES/EBU audio data while the fifth format corresponds to the AES/EBU audio format. During reset, the audio outputs are forced LOW.

The GS9023B supports muting of the audio data outputs. The output serial audio samples are forced to zero when the MUTE pin or "MUTE" bit of Host Interface Register \#4h are set HIGH. The audio data outputs are also muted when there is no video input signal.

Table 3-12: Audio Output Formats

| Formats | WCOUT | AM[2] | AM[1] | AM[0] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AOUT-MODE 0 | Active 48 kHz | 0 | 0 | 0 |
| AOUT-MODE 1 | Active 48 kHz | 0 | 0 | 1 |
| AOUT-MODE 2 | Active 48 kHz | 0 | 1 | 0 |
| AOUT-MODE 3 | Active 48 kHz | 0 | 1 | 1 |
| AOUT-AES/EBU | - | 1 | 0 | 1 |
| Not Used | - | 1 | 1 | 0 |
| Not Used | - | 1 | 1 | 1 |


Figure 3-14: Audio Data Output Formats
GS9023B GENLINX® II GS9023B Embedded Audio
Data Sheet

### 3.2.6 Control Code Output

In the non-AES/EBU output formats, the $\mathrm{V}, \mathrm{U}$ and C bits are output separately from the audio data stream. The bits are output respectively to the VFLA/B, UDA/B and CSA/B pins according to the channel pair to which they belong and change state on the rising edge of WCOUT. The SAFA/B output pins are set to HIGH for one audio frame out of 192 frames to mark the start of a block. In the AES/EBU audio output format, the respective pins are not used.

### 3.2.7 Detection of Audio Packets

The GS9023B can demultiplex up to four audio channels of an audio group. The audio group (Audio packet data ID) for each device is configured in "AD20ID[3:0]" of Host Interface Register \#3h. When the corresponding audio packets are found on the active video line, the GS9023B sets the respective "CHACT(4-1)" bits of Host Interface Register \#1h.

NOTE: When multiple audio groups are embedded in the video stream, the status bits "CHACT(4-1)" are only valid if the audio group being extracted immediately follows the EAV. If the audio group does not immediately follow the EAV, the device will still de-embed the audio correctly, however, the "CHACT(4-1)" bits will be invalid.

If no corresponding audio packets are found on the active video line, the " $\mathrm{CHACT}(4-1)$ " bits are set LOW.

By connecting four GS9023B devices in parallel, it is possible to demultiplex up to 16 audio channels in a component video signal as shown in Figure 3-15. On power up, audio group 1 is selected by default.

NOTE: When more than two channels of audio are embedded in an incoming audio data packet, audio samples from channel 1 must be embedded in either the 1st or 2 nd sample position after the start of the audio data packet. Please refer to SMPTE 272M for details of the audio data packet formatting.


Figure 3-15: Demultiplex Mode Parallel Architecture

### 3.2.8 Detection of Extended Audio Packets

The GS9023B can demultiplex 20 or 24 bit audio samples. For 24 bit audio samples, the 20 MSBs of a 24 bit audio sample are contained in the audio data packets and the 4 LSBs are contained in an extended audio data packet as defined in SMPTE 272. The audio group (Extended packet data ID) for each device is configured in "AD4ID[3:0]" of Host Interface Register \#3h. When the corresponding extended audio packets are detected on the active video stream, the GS9023B sets the AUXEN pin and the "A4ON" bit of Host Interface Register \#1h to HIGH. If no corresponding extended audio packets are found on the active video line, the AUXEN pin and "A4ON" bit are set to LOW. On power up, audio group 1 extended audio packets are selected by default.

### 3.2.9 Detection of Audio Control Packets

The audio group (Audio control packet data ID) for each device is configured in "ACID[3:0]" of Host Interface Register \#4h. When the configured ID is detected on the designated video lines (see Table 3-6), the "ACON" bit of Host Interface Register \#1h is set. The corresponding Audio control parameters are stored in Host Interface Registers \#Ah, \#Bh, \#Ch and \#Dh. If an audio control packet is not detected or found in non-designated video lines, "ACON" is set to LOW. However, the information in the audio control packets found in non-designated lines is considered valid and is stored in Host Interface Registers \#Ah, \#Bh, \#Ch and \#Dh. On power up, audio group 1 audio control packets are selected by default.

### 3.2.10 Detection and Output of Arbitrary Data Packets

The GS9023B is capable of demultiplexing arbitrary data packets according to SMPTE 291 M . There are no limitations on the number of packets that can be demultiplexed and the packets can be located outside of the vertical blanking interval (VBI).

The arbitrary data packet data ID is configured in PKTID[7:0] of Host Interface Register \#5h. When the configured ID is detected in the active video or HANC area, data on the PKT[8:0] pins is clocked out on the rising edge of PCLK. The GS9023B sets the PKTEN output pin HIGH, when the data at the PKT[8:0] outputs is valid. PKTEN is set LOW when the last user data word (UDW) is output from PKT[8:0]. Figure 3-16 shows the output timing.

### 3.2.11 Error Detection

The GS9023B provides error status information in Host Interface Registers \#7h, \#8h and \#9h as described in Table 4-2. Register \#7 contains error information on audio sampling and CRC conditions. Register \#8 contains error information on audio packet data block number and data count. Register \#9 contains error information on Control packets. Errors are cleared when the respective Host Interface Register is read.


NOTE: 1 - The ancillary data flag, ADF, is one word in composite systems (ANSI/SMPTE 259M) and three words in component systems (ANSI/SMPTE 125M).

Figure 3-16: Arbitrary Data Output Timing Diagram

### 3.3 Multiplex and Demultiplex Modes

### 3.3.1 Delay of Video and Audio

The GS9023B can be configured for various audio sample delays with respect to the video signal. The audio sample delay is selected in "BUFSEL[1:0]" of Host Interface Register \#6h. Table 3-13 lists the various audio sample delays.

### 3.3.2 Non-Standard Sample Distributions

Gennum Corporation has made every effort to maximize compatibility of the GS9023B with other Embedded Audio data streams. Unfortunately, due to variations in implementations (i.e. non-standard sample distributions) Gennum cannot guarantee compatibility with all Embedded Audio data streams.

### 3.3.3 Host Interface

The Host Interface Registers allow for device configuration and provide status information. The GS9023B contains sixteen internal registers that are accessible through the Host Interface. Based on the mode of operation the registers have different functionality. In Multiplex Mode the registers are defined in Table 4-1 and in Demultiplex Mode the registers are defined in Table 4-2.

The asynchronous Host Interface consists of a 4 bit address bus (ADDR[3:0]), 8 bit data bus (DATA[7:0]), read enable ( $\overline{\mathrm{RE}}$ ), write enable ( $\overline{\mathrm{WE}}$ ) and chip select ( $\overline{\mathrm{CS}}$ ). The Host Interface access is independent of the PCLK or ACLK inputs. Read and write cycle timing is detailed in Figure 2-3.
In a read cycle, $\overline{\mathrm{CS}}$ is driven $\mathrm{LOW} \mathrm{t}_{\mathrm{AS}}$ seconds after a valid address. $\overline{\mathrm{RE}}$ is then driven LOW after $t_{A C S}$ seconds for a minimum of $t_{R D}$ seconds. After $t_{G Q V}$ seconds, the address register contents are output on the data bus. After a minimum of $t_{R D H}$ seconds, $\overline{\mathrm{CS}}$ is driven HIGH to end the cycle.
Similarly, in a write cycle, $\overline{\mathrm{CS}}$ is driven $\mathrm{LOW} \mathrm{t}_{\mathrm{AS}}$ seconds after a valid address. $\overline{\mathrm{WE}}$ is then driven low after $\mathrm{t}_{\mathrm{ACS}}$ seconds for a minimum of $\mathrm{t}_{\mathrm{WD}}$ seconds. Valid data must be present for a minimum of $\mathrm{t}_{\mathrm{DS}}$ seconds before $\overline{\mathrm{WE}}$ is driven HIGH again. After a minimum of $\mathrm{t}_{\mathrm{WDH}}$ seconds, $\overline{\mathrm{CS}}$ is driven HIGH to end the cycle.

### 3.3.4 Reset

Reset timing is detailed in Figure 2-4. Setting the $\overline{\text { RESET }}$ pin to LOW for a period of $t_{\text {RESET }}$ seconds forces the audio outputs LOW and re-initializes the internal control circuitry including returning all Host Interface Register values to their original default values. The $\overline{\text { RESET }}$ pin can be used for synchronizing multiple devices.

### 3.3.5 Interconnection with GS9032 or GS7005

The user should pay special attention when laying out the GS9023B to operate with the GS9032 or GS7005. The MSB to LSB convention is consistent between the GS9023B and GS9022 but reversed with respect to the GS9032 or GS7005. Layout complexity can be minimized by placing the GS9023B and the GS9032 or GS7005 on opposite sides of the printed circuit board (PCB).

### 3.3.6 Audio Clock and Video Clock Stability in Multiplex Mode

Once the GS9023B is locked and processing audio, it is recommended that the audio clock frequency (ACLK at 128fs) remains stable and locked to video clock (VCLK). If VCLK is periodically switched or momentarily unstable, the audio clock phase locked loop circuit external to the GS9023B may be disrupted, causing ACLK to be at some arbitrary frequency. Under these conditions, operation of the GS9023B cannot be guaranteed and may result in corrupted audio. This is due to possible overflow/underflow condition occurring in the GS9023B internal FIFO, which is caused by the unstable audio clock input. If an overflow/underflow condition occurs, the "BUFSTAT" bit in Host Interface Register \#2h will be set HIGH. The internal FIFO can be reset automatically by setting the "BUFCTRL" bit in Host Interface Register \#2h HIGH.

### 3.3.7 Interconnection with GS9020

The TRS_INSERT function of the GS9020 should be disabled when operating with the GS9023B. This is controlled through the Host Interface of the GS9020 and through the CLIP_TRS pin. If enabled this may cause the GS9020 to continue outputting valid TRS codes even when the input signal is removed.The GS9023B may not detect this loss of video input and could remain locked. When a valid video signal is re-applied to the GS9020, the GS9023B's internal audio buffers may not have been reset and will therefore be in an overflow or underflow condition.

Table 3-13: Audio Video Delay

| "BUFSEL[1:0]" | Mode | Mulitplex <br> (us) | Demultiplex <br> (us) | Multiplex/Demultiplex <br> Connection (us) |
| :---: | :---: | :---: | :---: | :---: |
| 0 | (70 Sample) | 875 | 541 | 563 |
| 1 | (26 Sample - Default) | 250 | 312 | 437 |
| 2 | (20 Sample) | 187 | 250 | 516 |

1. NOTE: When the video signal is in D2 format, the delay is fixed at 70 samples ( 1416 us ).

## 4. Host Interface Tables

### 4.1 Multiplex Mode

Table 4-1: Multiplex Mode Host Interface Registers

| Address | Bit | Name | Function | R/W | Default |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Oh | 2-0 | VMOD[2:0] | Video standard selection. See Table 3-1. Valid when "VSEL" is HIGH. Used in conjunction with "D2_TRS". "VMOD[2]" is the MSB and "VMOD[0]" is the LSB. | R/W | 0 |
|  | 3 | LOCK | Lock indicator. Same functionality as the LOCK pin. When set HIGH, the video standard has been identified, the start of a new video frame has been detected and the device is ready to multiplex audio. <br> NOTE: LOCK will not be set HIGH unless at least one of the "CHACT(4-1)" bits (Address \#1h) is HIGH. | R | 0 |
|  | 4 | EDHDEL | EDH data delete. When set LOW, existing EDH packets are removed from the video stream. When set HIGH, existing EDH packets are passed through unless overwritten via the EDH_INS pin or the "EDHON" bit. Valid only when "CASCADE" (Address \#4h bit 7) is LOW. | R/W | 0 |
|  | 5 | RSV | Not used. | - | - |
|  | 6 | D2_TRS | TRS select. Same functionality as the TRS pin. Used to select video standard format. When set HIGH, TRS is added to a composite video signal. Valid only when "VSEL" is HIGH. Used in conjunction with "VMOD[2:0]". | R/W | 0 |
|  | 7 | VSEL | Video input format (external pin/internal register) configuration select. When set LOW, the video input format is configured via the VM[2:0] and TRS pins. When set HIGH, the video input format is configured via the "VMOD[2:0]" and "D2_TRS" bits. | R/W | 0 |
| 1 h | 3-0 | $\mathrm{CHACT}(4-1)$ | Audio channel enable. When set HIGH, the corresponding audio channel is multiplexed into the video signal. "CHACT(4)" is the MSB and "CHACT(1)" is the LSB. When set LOW, the GS9023B will not insert audio packets. <br> NOTE: Do not rely on default value. Reprogram on power up or reset. | R/W | Fh |
|  | 4 | ACON | Audio Control packet enable. When HIGH, the audio control packet is multiplexed in the video signal. | R/W | 0 |
|  | 5 | EDHON | EDH packet enable. Same functionality as the EDH_INS pin. When set HIGH, the GS9023B performs EDH functions according to SMPTE RP165. | R/W | 0 |
|  |  |  | NOTE: Active picture and full field data words are updated from recalculated values but error flag information is replaced with the values programmed in Host Interface Registers \#Eh and \#Fh. |  |  |
|  | 6 | A4ON | Extended audio packet enable. Same functionality as the AUXEN pin. When set HIGH, the extended audio packet is multiplexed in the video signal (24 bit audio). | R/W | 0 |
|  | 7 | PKON | Arbitrary data packet enable. When set HIGH, an arbitrary data packet is multiplexed in the video signal. | R/W | 0 |

Table 4-1: Multiplex Mode Host Interface Registers (Continued)

| Address | Bit | Name | Function | R/W | Default |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2h | 0 | REVISION | Device revision. When set HIGH, indicates the device is a GS9023B revision. | R | 1 |
|  | 1 | BUFSTAT | Internal buffer status. When set HIGH, indicates that the internal audio sample buffer is in an overflow/underflow condition. | R | 0 |
|  | 2 | VDET_MODE | Video detect mode. When set HIGH, the GS9023B will check the interval between the TRS on every line. If the interval is not consistent, the GS9023B assumes the input video has been switched and the internal audio sample buffer will be reset. Valid only when "RSEL" is set HIGH. | R/W | 0 |
|  | 3 | 8BIT_SEL | 8 -bit input selection. When set HIGH, the GS9023B will accept an 8-bit video input where $\operatorname{DIN}[9]$ is the MSB and $\operatorname{DIN}[2]$ is the LSB. DIN[1:0] should be set LOW. Valid only when "RSEL" is set HIGH. | R/W | 0 |
|  | 4 | RSV | Not used. | - |  |
|  | 5 | MUTE_̄ $\bar{A} / \mathrm{M}$ | Mute on buffer error mode. When set LOW, the GS9023B will automatically set the embedded audio packets to zero (MUTE) when BUFSTAT is HIGH. When set HIGH, the user is required to set the MUTE function on detection of BUFSTAT set HIGH. Valid only when "RSEL" is set HIGH. <br> It is recommended that this bit is kept HIGH whenever the video input to the device may undergo a synchronous switch (see Section 3.1.2.1). | R/W | 0 |
|  | 6 | BUFCTRL | Internal buffer control mode. When set HIGH, the GS9023B will automatically reset the internal audio sample buffer when an overflow/underflow condition is detected. When set LOW, the internal audio sample buffer will not be reset unless the user asserts a device RESET. Valid only when "RSEL" is set HIGH. <br> It is recommended that this bit is kept HIGH whenever the video input to the device may undergo a synchronous switch (see Section 3.1.2.1). | R/W | 0 |
|  | 7 | RSEL | Register select. When set HIGH, bits 2-6 of Host Interface register address \#2h are valid. | R/W | 0 |
| 3 h | 3-0 | AD20ID[3:0] | Designates the 4 LSBs of the audio data packet DID word. The 6 MSBs are internally generated. "AD20ID[3]" is the MSB and "AD20ID[0]" is the LSB. | R/W | Fh |
|  | 7-4 | AD4ID[3:0] | Designates the 4 LSBs of the extended audio data packet DID word. The 6 MSBs are internally generated. "AD4ID[3]" is the MSB and "AD4ID[0]" is the LSB. | R/W | Eh |

Table 4-1: Multiplex Mode Host Interface Registers (Continued)

| Address | Bit | Name | Function | R/W | Default |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4h | 3-0 | ACID[3:0] | Designates the 4 LSBs of the audio control packet DID word. The 6 MSBs are internally generated. "ACID[3]" is the MSB and "ACID[0]" is the LSB. | R/W | Fh |
|  | 4 | RSV | Not used. | - |  |
|  | 5 | MUTE | Audio mute enable. Same functionality as the MUTE pin. When set HIGH, the multiplexed audio and extended data packets are forced to zero. | R/W | 0 |
|  | 6 | AC34/12 | Audio control packet channel pair select. When set HIGH, audio control packet delay data for audio channels 3 and 4 is captured in registers Ah, $\mathrm{Bh}, \mathrm{Ch}$ and Dh. When set LOW, audio control packet delay data for audio channels 1 and 2 is captured in registers \#Ah, \#Bh, \#Ch and \#Dh. | R/W | 0 |
|  | 7 | CASCADE | Cascade select. When set HIGH, the GS9023B device is part of a cascaded architecture. New packets are multiplexed into the video signal starting at the first free location of the HANC space if there is sufficient remaining space to insert the packet. When set LOW, new packets are multiplexed into the video signal starting after EAV. Existing ancillary data packets are overwritten and the remaining ancillary space is cleared. | R/W | 0 |
| 5h | 7-0 | PKTID[7:0] | Designates the 8 LSBs of the arbitrary data packet DID word. The 2 MSBs are internally generated. "PKTID[7]" is the MSB and "PKTID[0]" is the LSB. | R/W | 0 |
| 6h | 1-0 | BUFSEL[1:0] | Video/audio delay mode. "BUFSEL[1]" is the MSB and "BUFSEL[0]" is the LSB. See Table 3-13. | R/W | 1 h |
|  | 7-2 | RSV | Not used. | - |  |
| 7h | 0 | ADERR | Audio data packet multiplexing error. The packet will not be multiplexed because of insufficient room in the HANC space. Error is cleared when read. | R | 0 |
|  | 1 | ACERR | Audio control packet multiplexing error. The packet will not be multiplexed because of insufficient room in the HANC space. Error is cleared when read. | R | 0 |
|  | 7-2 | RSV | Not used. | - |  |
| 8h | 0 | RSV | Not used. | - |  |
|  | 1 | PKTPRTY | Arbitrary data packet parity select. When set HIGH, a parity bit is generated for every user data word (UDW) of an arbitrary data packet. This overwrites any data input at the PKT[8] pin. | R/W | 0 |
|  | 5-2 | RSV | Not used. | - |  |
|  | 6 | AXST1/2 | Audio $\mathrm{CH} 1 / 2$ detection flag. When set HIGH, an audio signal has been detected. | R | 0 |
|  | 7 | AXST3/4 | Audio CH3/4 detection flag. When set HIGH, an audio signal has been detected. | R | 0 |
| 9h | 7-0 | PKTLINE[7:0] | Arbitrary data packet insertion line. Designates the horizontal line on which the GS9023B can multiplex arbitrary data packets in the video signal. | R/W | 0 |

## Table 4-1: Multiplex Mode Host Interface Registers (Continued)

| Address | Bit | Name | Function | R/W | Default |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ah | 7-0 | DELA/B[7:0] | Audio control packet delay. Designates the audio control packet delay data as specified in the SMPTE 272M standard. "DELA" corresponds to audio channels 1 and 2, while "DELB" corresponds to audio channels 3 and 4. "DELA/B[25]" is the MSB and "DELA/B[0]" is the LSB. | R/W | 0 |
| Bh | 7-0 | DELA/B[15:8] |  | R/W | 0 |
| Ch | 7-0 | DELA/B[23:16] |  | R/W | 0 |
| Dh | 1-0 | DELA/B[25:24] |  | R/W | 0 |
|  | 2 | ACSYNCA/B | Audio control packet synchronization data. Designates the sync mode bits (asx, asy), as defined in SMPTE 272M (Section 14.5), of channels $1 / 2$ or 3/4 of the audio control packet. The bits are selected by "AC34/12" in register \#4h. | R/W | 0 |
|  | 3 | ACDLY | Audio control packet delay active. Designates the 'e' bit of word "DELx0" of an audio control packet as defined in SMPTE 272 (Section 14.7). When set HIGH indicates valid audio delay data. | R/W | 0 |
|  | 7-4 | RSV | Not used. | - |  |
| Eh | 0 | ANCI_EDH | EDH packet ancillary error flag. Error detected here. | R/W | 0 |
|  | 1 | ANCI_EDA | EDH packet ancillary error flag. Error detected already. | R/W | 0 |
|  | 2 | ANCI_IDH | EDH packet ancillary error flag. Internal error detected here. | R/W | 0 |
|  | 3 | ANCI_IDA | EDH packet ancillary error flag. Internal error detected already. | R/W | 0 |
|  | 4 | ANCI_UES | EDH packet ancillary error flag. Unknown error status. | R/W | 0 |
|  | 7-5 | RSV | Not used. | - |  |
| Fh | 0 | CRCEDH_A/B | EDH packet error flag. "CRCEDH_A" represents Full Field information. "CRCEDH_B" represents Active Picture information. See "FF/AP_A/B" (bit 7). | R/W | 0 |
|  | 1 | CRCEDA_A/B | EDH packet error flag. "CRCEDA_A" represents Full Field information. "CRCEDA_B" represents Active Picture information. See "FF/AP_A/B" (bit 7). | R/W | 0 |
|  | 2 | CRCIDH_A/B | EDH packet error flag. "CRCIDH_A" represents Full Field information. "CRCIDH_B" represents Active Picture information. See "FF/AP_A/B" (bit 7). | R/W | 0 |
|  | 3 | CRCIDA_A/B | EDH packet error flag. "CRCIDA_A" represents Full Field information. "CRCIDA_B" represents Active Picture information. See "FF/AP_A/B" (bit 7). | R/W | 0 |
|  | 4 | CRCUES_A/B | EDH packet error flag. "CRCUES_A" represents Full Field information. "CRCUES_B" represents Active Picture information. See "FF/AP_A/B" (bit 7). | R/W | 0 |
|  | 5 | CRCVLD_A/B | EDH packet CRC valid flag. "CRCVLD_A" represents Full Field information. "CRCVLD_B" represents Active Picture information. See "FF/AP_A/B" <br> (bit 7). | R/W | 0 |
|  | 6 | RSV | Not used. | - |  |
|  | 7 | FF/AP_A/B | Full Field/Active Picture select. When set HIGH, the FF (Full Field) information is displayed in the above mentioned bits. When set LOW, the AP (Active Picture) information is displayed. | R/W | 0 |

### 4.2 Demultiplex Mode

Table 4-2: Demultiplex Mode Host Interface Registers

| Address | Bit | Name | Function | R/W | Default |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Oh | 2-0 | VMOD[2:0] | Video standard selection. See Table 3-1. Valid when "VSEL" is HIGH. Used in conjunction with "D2_TRS". "VMOD[2]" is the MSB and "VMOD[0]" is the LSB. | R/W | 0 |
|  | 3 | LOCK | Lock indicator. Same functionality as the LOCK pin. When set HIGH, the video standard has been identified, the 'lock' process selected by "ACTSEL" has been validated and the device is ready to demultiplex audio. See "ACTSEL" description. | R | 0 |
|  | 4 | ADEL | Ancillary data delete. Same functionality as the ANCI pin. When set HIGH, each ancillary data packet with a DID corresponding to either the audio packet DID, the extended audio packet DID or the arbitrary packet DID is removed from the video signal. When the "ADEL" bit is LOW, all ancillary data packets remain in the video signal. Valid only when "VSEL" is HIGH. | R/W | 0 |
|  | 5 | RSV | Not used. | - | - |
|  | 6 | D2_TRS | TRS select. Same functionality as the TRS pin. Used to select video standard format. When set HIGH, TRS is removed from a composite video signal. Valid only when "VSEL" is HIGH. Used in conjunction with "VMOD[2:0]". | R/W | 0 |
|  | 7 | VSEL | Video input format (external pin/internal register) configuration select. When set LOW, the video input format is configured via the VM[2:0] and TRS pins. When set HIGH, the video input format is configured via the "VMOD[2:0]" and "D2_TRS" bits. | R/W | 0 |
| 1h | 3-0 | CHACT(4-1) | Active audio channel flags. When set HIGH, the corresponding audio packets have been detected on the active video line. When set LOW, no corresponding audio packets have been detected on the active video line. The flags are updated on every frame. | R | 0 |
|  |  |  | NOTE: When multiple audio groups are embedded in a video signal, the GS9023B will only indicate the presence of the first audio group. All audio groups will be properly demultiplexed, but the indicators for multiple groups will not be set correctly. |  |  |
|  | 4 | ACON | Audio Control packet flag. When set HIGH, the audio control packet has been detected in the video signal. | R | 0 |
|  | 5 | EDHON | EDH flag. When set HIGH, EDH data has been detected in the video signal. | R | 0 |
|  | 6 | A4ON | Extended audio packet flag. When set HIGH, the extended audio packet has been detected on the active video line ( 24 bit audio). When set LOW, no extended audio packet has been detected on the active video line ( 24 bit audio). | R | 0 |
|  | 7 | RSV | Not used. | - | - |

Table 4-2: Demultiplex Mode Host Interface Registers (Continued)

| Address | Bit | Name | Function | R/W | Default |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2h | 0 | REVISION | Device revision. When set HIGH, indicates the device is a GS9023B revision. | R | 1 |
|  | 1 | RSV | Not used. | - | - |
|  | 2 | VDET_MODE | Video detect mode. When set HIGH, the GS9023B will check the interval between the TRS on every line. If the interval is not consistent, the GS9023B assumes the input video has been switched and the internal audio sample buffer will be reset. Valid only when "RSEL" is set HIGH. | R/W | 0 |
|  | 3 | RSV | Not used. | - | - |
|  | 4 | RSV | Not used. | - | - |
|  | 5 | RSV | Not used. | - | - |
|  | 6 | RSV | Not used. | - | - |
|  | 7 | RSEL | Register select. When set HIGH, bit 2 of Host Interface register address \#2h is valid. | R/W | 0 |
| 3 h | 3-0 | AD20ID[3:0] | Designates the 4 LSBs of the audio data packet DID word. The 6 MSBs are internally generated. "AD2OID[3]" is the MSB and "AD20ID[0]" is the LSB. | R/W | Fh |
|  | 7-4 | AD4ID[3:0] | Designates the 4 LSBs of the extended audio data packet DID word. The 6 MSBs are internally generated. "AD4ID[3]" is the MSB and "AD4ID[0]" is the LSB. | R/W | Eh |
| 4h | 3-0 | ACID[3:0] | Designates the 4 LSBs of the audio control packet DID word. The 6 MSBs are internally generated. "ACID[3]" is the MSB and "ACID[0]" is the LSB. | R/W | Fh |
|  | 4 | RSV | Not used. | - | - |
|  | 5 | MUTE | Audio mute enable. Same functionality as the MUTE pin. When set HIGH, the demultiplexed audio and extended packet data are forced to zero. | R/W | 0 |
|  | 6 | ACTSEL | Audio lock process select. When set HIGH, the GS9023B 'locks' by detecting the presence of an audio control packet corresponding to the DID configured in "ACID[3:0]" and occurring at the expected line and position as listed in Table 3-6. When set LOW, the GS9023B 'locks' by counting the number of audio samples in a frame or multiple frames and validating the number of samples detected based on the video standard. | R/W | 0 |
|  | 7 | RSV | Not used. | - | - |
| 5 h | 7-0 | PKTID[7:0] | Designates the 8 LSBs of the arbitrary data packet DID word. The 2 MSBs are internally generated. "PKTID[7]" is the MSB and "PKTID[0]" is the LSB. | R/W | 0 |

Table 4-2: Demultiplex Mode Host Interface Registers (Continued)

| Address | Bit | Name | Function | R/W | Default |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 h | 1-0 | BUFSEL[1:0] | Video/audio delay mode. "BUFSEL[1]" is the MSB and "BUFSEL[0]" is the LSB. See Table 3-13. | R/W | 1h |
|  | 2 | CRCADD | AES/EBU CRC select. When set HIGH, the C bit (channel status information) of each audio sample contains CRC information as defined in the AES3-1992 standard. | R/W | 0 |
|  | 7-3 | RSV | Not used. | - | - |
| 7h | 4-0 | RSV | Not used. | - | - |
|  | 5 | SAMPERR | Sample error. Incorrect number of audio samples detected. 8008 audio samples ( 48 kHz ) in 5 video frames for a 525 line video format. 1920 audio samples ( 48 kHz ) in 1 video frame for a 625 line video format. | R | 0 |
|  | 6 | ACRCERR1/2 | Audio channel 1/2 CRC error. | R | 0 |
|  | 7 | ACRCERR3/4 | Audio channel 3/4 CRC error. | R | 0 |
| 8h | 0 | A20DBNERR | Audio packet DBN error. A DBN discontinuity was detected. | R | 0 |
|  | 1 | A20DCERR | Audio packet DC error. The number of UDW indicated does not match the number of words found in the data packet. | R | 0 |
|  | 2 | RSV | Not used. | - | - |
|  | 3 | A20B9ERR | Audio packet inversion bit error. An incorrect bit 9 inversion of bit 8 was detected in the audio packet. | R | 0 |
|  | 7-4 | RSV | Not used. | - | - |
| 9 h | 0 | RSV | Not used. | - | - |
|  | 1 | ACCDCERR | Audio control packet DC error. The number of UDW indicated does not match the number of words found in the audio control packet. | R | 0 |
|  | 3-2 | RSV | Not used. | - | - |
|  | 4 | ACCB9ERR | Audio control packet inversion bit error. An incorrect bit 9 inversion of bit 8 was detected in the audio control packet. | R | 0 |
|  | 6-5 | RSV | Not used. | - | - |
|  | 7 | A4B9ERR | Extended audio packet inversion bit error. An incorrect bit 9 inversion of bit 8 was detected in the extended audio packet. | R | 0 |
| Ah | 7-0 | DELA/B[7:0] | Audio control packet delay. Designates the audio control packet | R | 0 |
| Bh | 7-0 | DELA/B[15:8] | corresponds to audio channels 1 and 2 , while DELB is the | R | 0 |
| Ch | 7-0 | DELA/B[23:16] | corresponds to audio channels 3 and 4. "DELA/B[25]" is the MSB and "DELA/B[0]" is the LSB. | R | 0 |
| Dh | 1-0 | DELA/B[25:24] |  | R | 0 |
|  | 2 | ACSYNCA/B | Audio control packet synchronization data. Designates the sync mode bits (asx, asy) as defined in SMPTE 272M (section 14.5) of channels $1 / 2$ or $3 / 4$ of the audio control packet. The bits are selected by "AC34/12". | R | 0 |

Table 4-2: Demultiplex Mode Host Interface Registers (Continued)

| Address | Bit | Name | Function | R/W | Default |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | ACDLY | Audio control packet delay active. Designates the 'e' bit of word "DELx0" of an audio control packet as defined in SMPTE 272 (section 14.7). When HIGH indicates valid audio delay data. | R | 0 |
|  | 4 | ACT1/2 | Active channel $1 / 2$ flag. Demultiplexed from the audio control packet, when present. | R | 0 |
|  | 5 | ACT3/4 | Active channel 3/4 flag. Demultiplexed from the audio control packet, when present. | R | 0 |
|  | 6 | RSV | Not used. | - | - |
|  | 7 | AC34/12 | Audio control packet and channel status channel pair select. <br> When set LOW, the audio control packet delay data for audio channels 1 and 2 is captured in registers \#Ah, \#Bh, \#Ch and \#Dh. Registers \#Eh and \#Fh will display the channel status information for channels 1 and 2 respectively. <br> When set HIGH, the audio control packet delay data for audio channels 3 and 4 is captured in registers \#Ah, \#Bh, \#Ch and \#Dh. Registers \#Eh and \#Fh will display the channel status information for channels 3 and 4 respectively. | R/W | 0 |
| Eh | 0 | CONPRO1/3 | If AC34/12 bit of \#Dh is set LOW AES/EBU channel 1 Consumer/Professional status. <br> If AC34/12 bit of \#Dh is set HIGH AES/EBU channel 3 Consumer/Professional status. See AES-3 1992 standard. | R | 0 |
|  | 1 | AUDMOD1/3 | If AC34/12 bit of \#Dh is set LOW AES/EBU channel 1 normal/non-audio status. <br> If AC34/12 bit of \#Dh is set HIGH AES/EBU channel 3 normal/non-audio status. See AES-3 1992 standard. | R | 0 |
|  | 4-2 | EMPH 1/3[2:0] | If AC34/12 bit of \#Dh is set LOW <br> AES/EBU channel 1 emphasis status. "EMPH1/3[2]" is the MSB and "EMP1/3[0]" is the LSB. <br> If AC34/12 bit of \#Dh is set HIGH <br> AES/EBU channel 3 emphasis status. "EMPH1/3[2]" is the MSB and "EMP1/3[0]" is the LSB. <br> See AES-3 1992 standard. | R | 0 |
|  | 5 | SYNC1/3 | If AC34/12 bit of \#Dh is set LOW AES/EBU channel 1 sync status. <br> If AC34/12 bit of \#Dh is set HIGH AES/EBU channel 3 sync status. <br> See AES-3 1992 standard. | R | 0 |
|  | 7-6 | FSEL1/3[1:0] | If AC34/12 bit of \#Dh is set LOW <br> AES/EBU channel 1 frequency select status. "FSEL1/3[1]" is the MSB and "FSEL1/3[0]" is the LSB. <br> If AC34/12 bit of \#Dh is set HIGH <br> AES/EBU channel 3 frequency select status. "FSEL1/3[1]" is the MSB and "FSEL1/3[0]" is the LSB. <br> See AES-3 1992 standard. | R | 0 |

Table 4-2: Demultiplex Mode Host Interface Registers (Continued)

| Address | Bit | Name | Function | R/W | Default |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fh | 0 | CONPRO2/4 | If AC34/12 bit of \#Dh is set LOW AES/EBU channel 2 Consumer/Professional status. <br> If AC34/12 bit of \#Dh is set HIGH AES/EBU channel 4 Consumer/Professional status. See AES-3 1992 standard. | R | 0 |
|  | 1 | AUDMOD2/4 | If AC34/12 bit of \#Dh is set LOW AES/EBU channel 2 normal/non-audio status. <br> If AC34/12 bit of \#Dh is set HIGH AES/EBU channel 4 normal/non-audio status. See AES-3 1992 standard. | R | 0 |
|  | 4-2 | EMPH2/4[2:0] | If AC34/12 bit of \#Dh is set LOW <br> AES/EBU channel 2 emphasis status. "EMPH2/4[2]" is the MSB and "EMP2/4[0]" is the LSB. <br> If AC34/12 bit of \#Dh is set HIGH <br> AES/EBU channel 4 emphasis status. "EMPH2/4[2]" is the MSB and "EMP2/4[0]" is the LSB. <br> See AES-3 1992 standard. | R | 0 |
|  | 5 | SYNC2/4 | If AC34/12 bit of \#Dh is set LOW AES/EBU channel 2 sync status. <br> If AC34/12 bit of \#Dh is set HIGH AES/EBU channel 4 sync status. <br> See AES-3 1992 standard. | R | 0 |
|  | 7-6 | FSEL2/4[1:0] | If AC34/12 bit of \#Dh is set LOW <br> AES/EBU channel 2 frequency select status. "FSEL2/4[1]" is the MSB and "FSEL2/4[0]" is the LSB. <br> If AC34/12 bit of \#Dh is set HIGH <br> AES/EBU channel 4 frequency select status. "FSEL2/4[1]" is the MSB and "FSEL2/4[0]" is the LSB. <br> See AES-3 1992 standard. | R | 0 |

## 5. Clock Generation for the GS9023B with the GS4901B

### 5.1 Demultiplexing

The user must provide an ACLK input at 128fs, where fs is the fundamental sampling frequency of 48 kHz . The ACLK input must be synchronized to an external reference. Gennum's GS4901B device can be used to provide the necessary audio clock inputs while being genlocked to a reference.

For SD formats, the GS4901B will use the video timing signals from a deserializer as the input reference, as shown in Figure 5-1. For all SD formats where only one GS4901B is used, all 4 embedded audio channels must be synchronous to the video.


Figure 5-1: Using the GS9023B with the GS4901B in Demultiplexing mode

### 5.2 Multiplexing

The GS9023B has three audio clock inputs: ACLK, WCINA and WCINB. For both AES/EBU and serial audio modes, the user must provide an ACLK input at 128fs, where fs is the fundamental sampling frequency of 48 kHz . For serial audio input modes, an audio word clock at 48 kHz must also be supplied at the WCINA/B input.

Audio input AINA must be synchronous to the ACLK and WCINA inputs, and audio input AINB must be synchronous to the ACLK and WCINB inputs. All audio clock timing must be synchronized to the video input timing.

The GS4901B can be used to provide the necessary audio clock inputs while being genlocked to a reference. The following diagram illustrates the connection of the GS4901B to the GS9023B.


Figure 5-2: Using the GS9023B with the GS4901B in Multiplexing mode

## 6. Packaging \& Ordering Information

### 6.1 Package Dimensions



View on A-A


100 pin TQFP
Dimensions in millimetres

### 6.2 Packaging Data

| Parameter | Value |
| :--- | :--- |
| Package Type | 100 pin TQFP |
| Moisture Sensitivity Level | 3 |
| Junction to Case Thermal Resistance, $\theta_{\mathrm{j}-\mathrm{c}}$ | $4^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction to Air Thermal Resistance, $\theta_{\mathrm{j}-\mathrm{a}}$ (at zero <br> airflow) | $42^{\circ} \mathrm{C} / \mathrm{W}$ |
| Pb-free and RoHS Compliant | Yes |

### 6.3 Ordering Information

| Part Number | Package | Temperature | Pb-Free | RoHS-Compliant |
| :---: | :---: | :---: | :---: | :---: |
| GS9023BCVE3 | 100 pin TQFP | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | Yes | Yes |

## 7. Revision History

| Version | ECR | Date | Changes / Modifications |
| :--- | :--- | :--- | :--- |
| 0 | 139049 | August 2006 | New document. |
| 1 | 145187 | May 2007 | Changed Table 4-2: Demultiplex Mode Host <br> Interface Registers Address 9h Bit 0 to RSV (not <br> used) from ACCDBNERR. |
| 2 | 153308 | December 2009 | Update to document format. |

## document identification DATA SHEET

The product is in production. Gennum reserves the right to make changes to

## CAUTION

ELECTROSTATIC SENSITIVE DEVICES
the product at any time without notice to improve reliability, function or design, in order to provide the best product possible.

DO NOT OPEN PACKAGES OR HANDLE EXCEPT AT A STATIC-FREE WORKSTATION


Gennum Corporation assumes no liability for any errors or omissions in this document, or for the use of the circuits or devices described herein. The sale of the circuit or device described herein does not imply any patent license, and Gennum makes no representation that the circuit or device is free from patent infringement.
All other trademarks mentioned are the properties of their respective owners.
GENNUM and the Gennum logo are registered trademarks of Gennum Corporation.
© Copyright 2006 Gennum Corporation. All rights reserved.
www.gennum.com

